We investigated the genetic origin of the phenotype of three children from two unrelated Italian families presenting with a previously-unrecognized, seemingly autosomal recessive disorder that included a severe form of spondylo-epiphyseal dysplasia, sensorineural hearing loss, intellectual disability, and Leber congenital amaurosis (SHILCA), as well as some brain anomalies that were visible at the MRI. Autozygome-based analysis showed that these children shared a 4.6 Mb region of homozygosity on chromosome 1, with an identical haplotype. Nonetheless, whole-exome sequencing failed to identify any shared rare coding variants, in this region or elsewhere. We then determined the transcriptome of patients' fibroblasts by RNA sequencing, followed by additional whole-genome sequencing experiments. Gene expression analysis revealed a 4-fold downregulation of the gene NMNAT1, previously associated with Leber congenital amaurosis (LCA) and residing in the shared autozygous interval. Short- and long-read whole-genome sequencing highlighted a duplication involving 2 out of the 5 exons of NMNAT1 main isoform (NM_022787.3), leading to the production of aberrant mRNAs. No other pathogenic variants in NMNAT1 have been previously shown to cause non-syndromic LCA. However, no patient with null biallelic variants has ever been described, and murine Nmnat1 knockouts show embryonic lethality. We hypothesize that complete absence of NMNAT1 activity is not compatible with life. The rearrangement found in our cases, presumably causing a strong but not complete reduction of enzymatic activity, may therefore result in an intermediate syndromic phenotype, between non-syndromic LCA and lethality.

An Alu-mediated duplication in NMNAT1, involved in NAD biosynthesis, causes a novel syndrome, SHILCA, affecting multiple tissues and organs

Torella, Annalaura;Nigro, Vincenzo;Testa, Francesco;Simonelli, Francesca;Banfi, Sandro;
2020

Abstract

We investigated the genetic origin of the phenotype of three children from two unrelated Italian families presenting with a previously-unrecognized, seemingly autosomal recessive disorder that included a severe form of spondylo-epiphyseal dysplasia, sensorineural hearing loss, intellectual disability, and Leber congenital amaurosis (SHILCA), as well as some brain anomalies that were visible at the MRI. Autozygome-based analysis showed that these children shared a 4.6 Mb region of homozygosity on chromosome 1, with an identical haplotype. Nonetheless, whole-exome sequencing failed to identify any shared rare coding variants, in this region or elsewhere. We then determined the transcriptome of patients' fibroblasts by RNA sequencing, followed by additional whole-genome sequencing experiments. Gene expression analysis revealed a 4-fold downregulation of the gene NMNAT1, previously associated with Leber congenital amaurosis (LCA) and residing in the shared autozygous interval. Short- and long-read whole-genome sequencing highlighted a duplication involving 2 out of the 5 exons of NMNAT1 main isoform (NM_022787.3), leading to the production of aberrant mRNAs. No other pathogenic variants in NMNAT1 have been previously shown to cause non-syndromic LCA. However, no patient with null biallelic variants has ever been described, and murine Nmnat1 knockouts show embryonic lethality. We hypothesize that complete absence of NMNAT1 activity is not compatible with life. The rearrangement found in our cases, presumably causing a strong but not complete reduction of enzymatic activity, may therefore result in an intermediate syndromic phenotype, between non-syndromic LCA and lethality.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/431174
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact