Inhibition of angiogenesis via blocking vascular endothelial growth factor receptor (VEGFR) signaling pathway emerged as an established approach in anticancer therapy. So far, many monoclonal antibodies and ATP-competitive small molecule inhibitors have been clinically validated and approved. In this study, structure-activity relationships (SAR) within the 2-phenylamino-substituted benzothiopyrano[4,3-d]pyrimidine class of kinase inhibitors were further refined by the synthesis and biological evaluation of new compounds 1–21 featuring different substitution patterns on the pendant phenyl moiety, combined with H, OCH3, or Cl at 8-position. Most compounds showed a promising human kinase insert domain receptor (KDR) inhibition profile, with IC50 values in the submicromolar/low nanomolar range, and promising antiproliferative activity on human umbilical vein endothelial cells (HUVECs) as well as on a panel of three human tumor cell lines. The angio-kinase selectivity profile was assessed for the most promising compound 16 against a set of six human kinases. Finally, computational studies allowed clarifying at molecular level the interaction pattern established by the compounds with KDR, highlighting key stable cation-π interactions, and thus providing the basis for further designing novel inhibitors.
New insights in the structure-activity relationships of 2-phenylamino-substituted benzothiopyrano[4,3-d]pyrimidines as kinase inhibitors
Cosconati, Sandro
Supervision
;
2018
Abstract
Inhibition of angiogenesis via blocking vascular endothelial growth factor receptor (VEGFR) signaling pathway emerged as an established approach in anticancer therapy. So far, many monoclonal antibodies and ATP-competitive small molecule inhibitors have been clinically validated and approved. In this study, structure-activity relationships (SAR) within the 2-phenylamino-substituted benzothiopyrano[4,3-d]pyrimidine class of kinase inhibitors were further refined by the synthesis and biological evaluation of new compounds 1–21 featuring different substitution patterns on the pendant phenyl moiety, combined with H, OCH3, or Cl at 8-position. Most compounds showed a promising human kinase insert domain receptor (KDR) inhibition profile, with IC50 values in the submicromolar/low nanomolar range, and promising antiproliferative activity on human umbilical vein endothelial cells (HUVECs) as well as on a panel of three human tumor cell lines. The angio-kinase selectivity profile was assessed for the most promising compound 16 against a set of six human kinases. Finally, computational studies allowed clarifying at molecular level the interaction pattern established by the compounds with KDR, highlighting key stable cation-π interactions, and thus providing the basis for further designing novel inhibitors.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.