As a continuation of our studies on 2-phenylindol-3-ylglyoxylamides as potent and selective translocator protein (TSPO) ligands, two subsets of novel derivatives, featuring hydrophilic group (OH, NH2, COOH) at the para-position of the pendent 2-phenyl ring (8-16) or different 2-aryl moieties, namely, 3-thienyl, p-biphenyl, 2-naphthyl (23-35), were synthesized and biologically evaluated, some of them showing K-i values in the subnanomolar range and the 2-naphthyl group performance being the best. The resulting SARs confirmed the key role played by interactions taking place between ligands and the lipophilic Li pocket of the TSPO binding site. Docking simulations were performed on the most potent compound of the present series (29) exploiting the recently available 3D structures of TSPO bound to its standard ligand (PK11195). Our theoretical model was fully consistent with SARs of the newly investigated as well of the previously reported 2-phenylindol-3-ylglyoxylamide derivatives.

Deepening the Topology of the Translocator Protein Binding Site by Novel N,N-Dialkyl-2-arylindol-3-ylglyoxylamides

COSCONATI, Sandro
;
2015

Abstract

As a continuation of our studies on 2-phenylindol-3-ylglyoxylamides as potent and selective translocator protein (TSPO) ligands, two subsets of novel derivatives, featuring hydrophilic group (OH, NH2, COOH) at the para-position of the pendent 2-phenyl ring (8-16) or different 2-aryl moieties, namely, 3-thienyl, p-biphenyl, 2-naphthyl (23-35), were synthesized and biologically evaluated, some of them showing K-i values in the subnanomolar range and the 2-naphthyl group performance being the best. The resulting SARs confirmed the key role played by interactions taking place between ligands and the lipophilic Li pocket of the TSPO binding site. Docking simulations were performed on the most potent compound of the present series (29) exploiting the recently available 3D structures of TSPO bound to its standard ligand (PK11195). Our theoretical model was fully consistent with SARs of the newly investigated as well of the previously reported 2-phenylindol-3-ylglyoxylamide derivatives.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/226902
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 34
social impact