Volkensin, a type 2 ribosome-inactivating protein from the roots of Adenia volkensii Harms (kilyambiti plant) was characterized both at the protein and nucleotide level by direct amino acid sequencing and cloning of the gene encoding the protein. Gene sequence analysis revealed that volkensin is encoded by a 1569-bp ORF (523 amino acid residues) without introns, with an internal linker sequence of 45 bp. Differences in residues present at several sequence positions (reproduced after repeated protein sequence analyses), with respect to the gene sequence, suggest several isoforms for the volkensin A-chain. Based on the crystallographic coordinates of ricin, which shares a high sequence identity with volkensin, a molecular model of volkensin was obtained. The 3D model suggests that the amino acid residues of the active site of the ricin A-chain are conserved at identical spatial positions, including Ser203, a novel amino acid residue found to be conserved in all known ribosome-inactivating proteins. The sugar binding site 1 of the ricin B-chain is also conserved in the volkensin B-chain, whilst in binding site 2, His246 replaces Tyr248. Native volkensin contains two free cysteinyl residues out of 14 derived from the gene sequence, thus suggesting a further disulphide bridge in the B chain, in addition to the inter- and intrachain disulphide bond pattern common to other type 2 ribosome-inactivating proteins.

Volkensin from Adenia volkensii Harms (kilyambiti plant), a type 2 ribosome-inactivating protein - Gene cloning, expression and characterization of its A-chain

CHAMBERY, Angela;DI MARO, Antimo;
2004

Abstract

Volkensin, a type 2 ribosome-inactivating protein from the roots of Adenia volkensii Harms (kilyambiti plant) was characterized both at the protein and nucleotide level by direct amino acid sequencing and cloning of the gene encoding the protein. Gene sequence analysis revealed that volkensin is encoded by a 1569-bp ORF (523 amino acid residues) without introns, with an internal linker sequence of 45 bp. Differences in residues present at several sequence positions (reproduced after repeated protein sequence analyses), with respect to the gene sequence, suggest several isoforms for the volkensin A-chain. Based on the crystallographic coordinates of ricin, which shares a high sequence identity with volkensin, a molecular model of volkensin was obtained. The 3D model suggests that the amino acid residues of the active site of the ricin A-chain are conserved at identical spatial positions, including Ser203, a novel amino acid residue found to be conserved in all known ribosome-inactivating proteins. The sugar binding site 1 of the ricin B-chain is also conserved in the volkensin B-chain, whilst in binding site 2, His246 replaces Tyr248. Native volkensin contains two free cysteinyl residues out of 14 derived from the gene sequence, thus suggesting a further disulphide bridge in the B chain, in addition to the inter- and intrachain disulphide bond pattern common to other type 2 ribosome-inactivating proteins.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/166541
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 26
social impact