Geohazards pose significant dangers to human safety, infrastructures, and the environment, highlighting the need for advanced monitoring techniques for early damage detection and structure management. The distributed optical fiber sensors (DFOS) are strain, temperature, and vibration monitoring tools characterized by minimal intrusiveness, accuracy, ease of deployment, and the ability to perform measurements with high spatial resolution. Although these sensors rely on well-established measurement techniques, available for over 40 years, their diffusion within monitoring and early warning systems is still limited, and there is a certain mistrust towards them. In this regard, based on several case studies, the implementation of DFOS for early warning of various geotechnical hazards, such as landslides, earthquakes and subsidence, is discussed, providing a comparative analysis of the typical advantages and limitations of the different systems. The results show that real-time monitoring systems based on well-established distributed fiber-optic sensing techniques are now mature enough to enable reliable and long-term geotechnical applications, identifying a market segment that is only minimally saturated by using other monitoring techniques. More challenging remains the application of the technique for vibration detection that still requires improved interrogation technologies and standardized practices before it can be used in large-scale, real-time early warning systems.
A Review of Strain-Distributed Optical Fiber Sensors for Geohazard Monitoring: An Update
Coscetta A.;Catalano E.;Damiano E.;de Cristofaro M.;Minardo A.;Molitierno E.
;Olivares L.;Vallifuoco R.;Zeni L.
2025
Abstract
Geohazards pose significant dangers to human safety, infrastructures, and the environment, highlighting the need for advanced monitoring techniques for early damage detection and structure management. The distributed optical fiber sensors (DFOS) are strain, temperature, and vibration monitoring tools characterized by minimal intrusiveness, accuracy, ease of deployment, and the ability to perform measurements with high spatial resolution. Although these sensors rely on well-established measurement techniques, available for over 40 years, their diffusion within monitoring and early warning systems is still limited, and there is a certain mistrust towards them. In this regard, based on several case studies, the implementation of DFOS for early warning of various geotechnical hazards, such as landslides, earthquakes and subsidence, is discussed, providing a comparative analysis of the typical advantages and limitations of the different systems. The results show that real-time monitoring systems based on well-established distributed fiber-optic sensing techniques are now mature enough to enable reliable and long-term geotechnical applications, identifying a market segment that is only minimally saturated by using other monitoring techniques. More challenging remains the application of the technique for vibration detection that still requires improved interrogation technologies and standardized practices before it can be used in large-scale, real-time early warning systems.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


