Background Hepatocellular carcinoma (HCC) remains a significant clinical challenge due to limited diagnostic and therapeutic options. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), play key roles in cancer biology. Our previous findings showed that miR-423-5p enhances anti-cancer effects on HCC patients treated with sorafenib by promoting autophagy. Here, we investigated the molecular mechanisms underlying miR-423-5p function through a comprehensive proteomic approach. Methods We generated an HCC cell line stably overexpressing miR-423-5p via lentiviral transduction. Total proteins were extracted from SNU-387 cells, enzymatically digested into peptides, and subsequently analysed by liquid chromatography-tandem mass spectrometry (LC-MS/M). Raw spectral data were processed and quantified using MaxQuant. Differentially expressed proteins (DEPs) were defined based on fold-change (|log2FC| >= 1) and false discovery rate (FDR < 0.05). The full proteomic dataset is available via the ProteomeXchange repository (identifier: PXD064869). Functional enrichment analysis of DEPs were performed using DAVID and Reactome. To assess clinical relevance, predicted and validated miR-423-5p targets were integrated with The Cancer Genome Atlas (TCGA) Liver Hepatocellular Carcinoma (LIHC) dataset using GEPIA platform. Survival analyses were performed using the Kaplan-Meier method. Results Proteomic profiling identified 698 DEPs in miR-423-5p-overexpressing cells compared to controls with significant enrichment in metabolic pathways, related to purine/pyrimidine metabolism and gluconeogenesis. Integration with bioinformatic predictions and miRTarBase validation identified 43 DEPs as potential direct targets of miR-423-5p. Among these, seven proteins (ACACA, ANKRD52, DVL3, MCM5, MCM7, RRM2, SPNS1, and SRM) were significantly associated with patient prognosis in the TCGA-LIHC cohort. These targets were downregulated in miR-423-5p-overexpressing cells but upregulated in advanced-stage HCC tissues, suggesting a potential role for miR-423-5p in the regulation of HCC pathogenesis. Stage-specific expression analysis showed increased levels from stage I to III, followed by a decline at stage IV. Notably, we experimentally confirmed miR-423-5p-mediated suppression of MCM7, DVL3, IMPDH1, and SRM (SPEE), supporting their functional involvement in HCC progression. Conclusion Overall, our findings support a tumour-suppressive role for miR-423-5p in HCC, mediated by modulation of metabolic pathways and suppression of oncogenic proteins. These results suggest that miR-423-5p and its downstream effectors may serve as promising biomarkers and potential therapeutic targets in HCC.
Proteomic profiling identifies miR-423-5p as a modulator of oncogenic metabolism in HCC
Luce A.;Bocchetti M.;Cossu A. M.
;Tathode M. S.;Romano M. P.;De Iesu M. R.;Sperlongano R.;Misso G.;Zappavigna S.;Caraglia M.
2025
Abstract
Background Hepatocellular carcinoma (HCC) remains a significant clinical challenge due to limited diagnostic and therapeutic options. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), play key roles in cancer biology. Our previous findings showed that miR-423-5p enhances anti-cancer effects on HCC patients treated with sorafenib by promoting autophagy. Here, we investigated the molecular mechanisms underlying miR-423-5p function through a comprehensive proteomic approach. Methods We generated an HCC cell line stably overexpressing miR-423-5p via lentiviral transduction. Total proteins were extracted from SNU-387 cells, enzymatically digested into peptides, and subsequently analysed by liquid chromatography-tandem mass spectrometry (LC-MS/M). Raw spectral data were processed and quantified using MaxQuant. Differentially expressed proteins (DEPs) were defined based on fold-change (|log2FC| >= 1) and false discovery rate (FDR < 0.05). The full proteomic dataset is available via the ProteomeXchange repository (identifier: PXD064869). Functional enrichment analysis of DEPs were performed using DAVID and Reactome. To assess clinical relevance, predicted and validated miR-423-5p targets were integrated with The Cancer Genome Atlas (TCGA) Liver Hepatocellular Carcinoma (LIHC) dataset using GEPIA platform. Survival analyses were performed using the Kaplan-Meier method. Results Proteomic profiling identified 698 DEPs in miR-423-5p-overexpressing cells compared to controls with significant enrichment in metabolic pathways, related to purine/pyrimidine metabolism and gluconeogenesis. Integration with bioinformatic predictions and miRTarBase validation identified 43 DEPs as potential direct targets of miR-423-5p. Among these, seven proteins (ACACA, ANKRD52, DVL3, MCM5, MCM7, RRM2, SPNS1, and SRM) were significantly associated with patient prognosis in the TCGA-LIHC cohort. These targets were downregulated in miR-423-5p-overexpressing cells but upregulated in advanced-stage HCC tissues, suggesting a potential role for miR-423-5p in the regulation of HCC pathogenesis. Stage-specific expression analysis showed increased levels from stage I to III, followed by a decline at stage IV. Notably, we experimentally confirmed miR-423-5p-mediated suppression of MCM7, DVL3, IMPDH1, and SRM (SPEE), supporting their functional involvement in HCC progression. Conclusion Overall, our findings support a tumour-suppressive role for miR-423-5p in HCC, mediated by modulation of metabolic pathways and suppression of oncogenic proteins. These results suggest that miR-423-5p and its downstream effectors may serve as promising biomarkers and potential therapeutic targets in HCC.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


