Background: A single lumbar-mounted inertial sensor offers a practical alternative to optoelectronic systems for gait analysis, simplifying measurements and improving usability in the clinical field. However, its validity can be influenced by sensor placement and signal choice. This study aimed to develop and validate a novel algorithm for estimating spatiotemporal parameters using anteroposterior linear acceleration and angular velocity around the sagittal axis using a single inertial measurement unit (IMU) placed on the lumbar region. The proposed algorithm was validated comparing the parameters computed by the algorithm with the ones computed using a commercial wearable system based on a two-foot-mounted IMU configuration. Thirty healthy subjects underwent a 2 min walk test, and five spatiotemporal parameters were computed using the two methodologies. Study results showed that cadence and gait cycle time exhibited very high agreement, with only a small, statistically significant bias in cadence negligible for practical purposes. In contrast, swing, stance, and double-support parameters showed disagreement due to the presence of systematic proportional errors. This work introduces a novel algorithm for gait event detection and spatiotemporal parameter estimation, addressing uncertainties related to sensor placement, metric models, processing techniques, and signal selection, while avoiding synchronization issues associated with using multiple sensors.

Validity of a Novel Algorithm to Compute Spatiotemporal Parameters Based on a Single IMU Placed on the Lumbar Region

Esposito, Fabrizio;Donisi, Leandro
2025

Abstract

Background: A single lumbar-mounted inertial sensor offers a practical alternative to optoelectronic systems for gait analysis, simplifying measurements and improving usability in the clinical field. However, its validity can be influenced by sensor placement and signal choice. This study aimed to develop and validate a novel algorithm for estimating spatiotemporal parameters using anteroposterior linear acceleration and angular velocity around the sagittal axis using a single inertial measurement unit (IMU) placed on the lumbar region. The proposed algorithm was validated comparing the parameters computed by the algorithm with the ones computed using a commercial wearable system based on a two-foot-mounted IMU configuration. Thirty healthy subjects underwent a 2 min walk test, and five spatiotemporal parameters were computed using the two methodologies. Study results showed that cadence and gait cycle time exhibited very high agreement, with only a small, statistically significant bias in cadence negligible for practical purposes. In contrast, swing, stance, and double-support parameters showed disagreement due to the presence of systematic proportional errors. This work introduces a novel algorithm for gait event detection and spatiotemporal parameter estimation, addressing uncertainties related to sensor placement, metric models, processing techniques, and signal selection, while avoiding synchronization issues associated with using multiple sensors.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/571265
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact