Introduction: Advanced neuroimaging studies have strongly contributed to clarify the gaps in the knowledge about migraine pathophysiology. Cortical thickness has garnered significant interest reflecting physiological processes such as gray matter neurogenesis and synaptic pruning, as well as pathophysiological mechanisms like neurodegeneration or plasticity changes associated with aging and disease. Evidence on cortical thickness highlights significant variability, likely due to migraine clinical complexity but also to methodological issues. Nevertheless, changes in the cortical thickness of areas involved in pain perception and modulation, as well as in cognitive and emotional attributes of pain experiences, have been consistently demonstrated reinforcing the concept of a dysfunctional neuro-limbic pain network in migraine. Areas covered: This review summarizes the available findings from advanced structural neuroimaging investigations, highlighting the most relevant findings and how they have contributed to the advancement in our understanding of migraine pathophysiology. This review is based on a literature search using PubMed along with the keyword ‘migraine’ combined with ‘cortical thickness.’ Expert opinion: Presently, it is challenging to ascertain whether the structural changes in migraine represent a primary phenomenon or the result of pain experience. Nevertheless, longitudinal neuroimaging studies have highlighted a role for treatments that, even if short-term, modulate cortical thickness, while also promoting the idea of structural changes as biomarkers.
The relevance of cortical thickness in migraine sufferers and implications to therapy
Silvestro, Marcello;Orologio, Ilaria;Cirillo, Mario;Esposito, Fabrizio;Tessitore, Alessandro;Russo, Antonio
2025
Abstract
Introduction: Advanced neuroimaging studies have strongly contributed to clarify the gaps in the knowledge about migraine pathophysiology. Cortical thickness has garnered significant interest reflecting physiological processes such as gray matter neurogenesis and synaptic pruning, as well as pathophysiological mechanisms like neurodegeneration or plasticity changes associated with aging and disease. Evidence on cortical thickness highlights significant variability, likely due to migraine clinical complexity but also to methodological issues. Nevertheless, changes in the cortical thickness of areas involved in pain perception and modulation, as well as in cognitive and emotional attributes of pain experiences, have been consistently demonstrated reinforcing the concept of a dysfunctional neuro-limbic pain network in migraine. Areas covered: This review summarizes the available findings from advanced structural neuroimaging investigations, highlighting the most relevant findings and how they have contributed to the advancement in our understanding of migraine pathophysiology. This review is based on a literature search using PubMed along with the keyword ‘migraine’ combined with ‘cortical thickness.’ Expert opinion: Presently, it is challenging to ascertain whether the structural changes in migraine represent a primary phenomenon or the result of pain experience. Nevertheless, longitudinal neuroimaging studies have highlighted a role for treatments that, even if short-term, modulate cortical thickness, while also promoting the idea of structural changes as biomarkers.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


