High glucose leads to cellular damage and dysfunction in the retina. Dietary interventions, including the use of ketogenic diets, have been explored for their potential to reduce the adverse effects of hyperglycemia. β-Hydroxybutyrate (BHB), a ketone body, has immune and anti-inflammatory properties. This study aims to investigate whether BHB ameliorates the harmful effects induced by high glucose in ARPE-19 cells, a model of retinal pigment epithelium. We investigated the effects induced by high glucose and/or BHB on viability, migration, colony-forming ability, cell cycle progression and cytokine production. Our data indicate that high glucose significantly reduces the viability of ARPE-19 cells with no significant changes in apoptosis or autophagy, while inducing cell cytostasis. On the other hand, BHB exerts a protective effect on ARPE-19 cells under hyperglycemic conditions improving cell viability and alleviating glucose-induced cell cycle arrest. Additionally, BHB treatment affects the expression of IL-8 and IL-17α, as well as of MCP-1, modulating the inflammatory response, cell migration and wound healing. In conclusion, this study highlights the potential protective role of BHB against the detrimental effects induced by high glucose on ARPE-19 cells. These findings support the use of ketone bodies in mitigating high glucose-induced cellular damage. Future research will be critical to translate these findings to the clinical practice for metabolic diseases.

β-Hydroxybutyrate mitigates the detrimental effects of high glucose in human retinal pigment epithelial ARPE-19 cells

Mallardo, Marta;Daniele, Aurora;Nigro, Ersilia
2025

Abstract

High glucose leads to cellular damage and dysfunction in the retina. Dietary interventions, including the use of ketogenic diets, have been explored for their potential to reduce the adverse effects of hyperglycemia. β-Hydroxybutyrate (BHB), a ketone body, has immune and anti-inflammatory properties. This study aims to investigate whether BHB ameliorates the harmful effects induced by high glucose in ARPE-19 cells, a model of retinal pigment epithelium. We investigated the effects induced by high glucose and/or BHB on viability, migration, colony-forming ability, cell cycle progression and cytokine production. Our data indicate that high glucose significantly reduces the viability of ARPE-19 cells with no significant changes in apoptosis or autophagy, while inducing cell cytostasis. On the other hand, BHB exerts a protective effect on ARPE-19 cells under hyperglycemic conditions improving cell viability and alleviating glucose-induced cell cycle arrest. Additionally, BHB treatment affects the expression of IL-8 and IL-17α, as well as of MCP-1, modulating the inflammatory response, cell migration and wound healing. In conclusion, this study highlights the potential protective role of BHB against the detrimental effects induced by high glucose on ARPE-19 cells. These findings support the use of ketone bodies in mitigating high glucose-induced cellular damage. Future research will be critical to translate these findings to the clinical practice for metabolic diseases.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/562866
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact