The application of organic amendments in agriculture has gained increasing attention as a sustainable approach to improving soil fertility and crop productivity. This study assessed the effects of vermicompost derived from water buffalo (Bubalus bubalis) manure on the yield and biochemical quality of cauliflower cultivated in soil types typical of the Campania region: loam and clay. Three fertilization treatments were tested, an unfertilized control, vermicompost (140 kg N ha−1), and mineral fertilizer (MIN), at the same nitrogen rate. The results showed that vermicompost more significantly improved plant growth compared to the unfertilized control, particularly in loam soil, where the biomass and the leaf number increased by 160% and 335%, respectively. In clay soil, vermicompost enhanced nutrient availability, leading to a 159% biomass increase relative to the control. While mineral fertilization resulted in the highest yields, vermicompost improved the antioxidant capacity and influenced the amino acid composition, particularly in clay soil, where it enhanced the total amino acid content by 35% over that of the control. Additionally, vermicompost increased the quantity of soil organic matter and moderated the oxidative stress responses, suggesting long-term benefits for soil health. These findings highlight the potential of vermicompost as an effective and sustainable soil amendment, particularly in regions with intensive livestock farming and nitrate-sensitive environments. Further research is needed to optimize its integration with conventional fertilization strategies to maximize the agronomic and environmental benefits.
From Water Buffalo (Bubalus bubalis) Manure to Vermicompost: Testing a Sustainable Approach for Agriculture
Fusco, Giovanna Marta;Morrone, Biagio
;Carillo, Petronia
2025
Abstract
The application of organic amendments in agriculture has gained increasing attention as a sustainable approach to improving soil fertility and crop productivity. This study assessed the effects of vermicompost derived from water buffalo (Bubalus bubalis) manure on the yield and biochemical quality of cauliflower cultivated in soil types typical of the Campania region: loam and clay. Three fertilization treatments were tested, an unfertilized control, vermicompost (140 kg N ha−1), and mineral fertilizer (MIN), at the same nitrogen rate. The results showed that vermicompost more significantly improved plant growth compared to the unfertilized control, particularly in loam soil, where the biomass and the leaf number increased by 160% and 335%, respectively. In clay soil, vermicompost enhanced nutrient availability, leading to a 159% biomass increase relative to the control. While mineral fertilization resulted in the highest yields, vermicompost improved the antioxidant capacity and influenced the amino acid composition, particularly in clay soil, where it enhanced the total amino acid content by 35% over that of the control. Additionally, vermicompost increased the quantity of soil organic matter and moderated the oxidative stress responses, suggesting long-term benefits for soil health. These findings highlight the potential of vermicompost as an effective and sustainable soil amendment, particularly in regions with intensive livestock farming and nitrate-sensitive environments. Further research is needed to optimize its integration with conventional fertilization strategies to maximize the agronomic and environmental benefits.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.