The increasing demand for self-powered sensors and wireless sensor networks, particularly for environmental and structural health monitoring applications, is driving the need for energy harvesting from natural sources. To fill a gap in the scientific literature, this study quantitatively investigates the advantages of hybrid energy harvesters, which utilize multiple energy sources, compared to single-source harvesters. The analysis leverages a real-world dataset collected from a meteorological station in Cervinara, Southern Italy. The measured data are processed to estimate the energy that can be recovered from solar, wind, and rain sources using energy harvesters designed to supply low-power electronic devices. The available energy serves as the basis for optimizing the sizing of a hybrid energy harvester that effectively integrates the aforementioned energy sources. The system sizing, carried out under the constraint of ensuring a continuous and uninterrupted power supply to the load, quantifies the benefits of using a hybrid harvester over a single-source harvester. The results show that one of the main advantages of the hybrid solution is the reduction in the size of the storage device, enabling the replacement of rechargeable batteries with supercapacitors, which offer both environmental and reliability benefits.
Quantifying the Benefits of Hybrid Energy Harvesting from Natural Sources
Simone A.;Marino P.;Greco R.;Lo Schiavo Alessandro
2025
Abstract
The increasing demand for self-powered sensors and wireless sensor networks, particularly for environmental and structural health monitoring applications, is driving the need for energy harvesting from natural sources. To fill a gap in the scientific literature, this study quantitatively investigates the advantages of hybrid energy harvesters, which utilize multiple energy sources, compared to single-source harvesters. The analysis leverages a real-world dataset collected from a meteorological station in Cervinara, Southern Italy. The measured data are processed to estimate the energy that can be recovered from solar, wind, and rain sources using energy harvesters designed to supply low-power electronic devices. The available energy serves as the basis for optimizing the sizing of a hybrid energy harvester that effectively integrates the aforementioned energy sources. The system sizing, carried out under the constraint of ensuring a continuous and uninterrupted power supply to the load, quantifies the benefits of using a hybrid harvester over a single-source harvester. The results show that one of the main advantages of the hybrid solution is the reduction in the size of the storage device, enabling the replacement of rechargeable batteries with supercapacitors, which offer both environmental and reliability benefits.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.