Background: Leukemia-secreted extracellular vesicles (EVs) carry biologically active cargo that promotes cancer-supportive mechanisms, including aberrant proliferative signaling, immune escape, and drug resistance. However, how antineoplastic drugs affect EV secretion and cargo sorting remains underexplored. Methods: Leukemia-secreted extracellular vesicles (EVs) were isolated by Differential UltraCentrifugation, and their miRNome and proteomic profiling cargo were analyzed following treatment with SAHA (Vorinostat) in Acute Myeloid Leukemia (AML) and Chronic Myeloid Leukemia (CML). The epigenetic modulation of leukemia-secreted EVs content on interesting key target molecules was validated, and their differential functional impact on cellular viability, cell cycle progression, apoptosis, and tumorigenicity was assessed. Results: SAHA significantly alters the cargo of Leukemia-derived EVs, including miR-194-5p and its target BCLAF1 (mRNA and protein), key regulators of Leukemia cell survival and differentiation. SAHA upregulates miR-194-5p expression while selective loading BCLAF1 into EVs, reducing the miRNA levels in the same compartment. Additionally, SAHA alters miRNA profile and proteomic composition associated with leukemic EVs, altering their tumor-supportive potential, with differential effects observed between AML and CML. Furthermore, in silico predictions suggest that these modified EVs may influence cell sensitivity to antineoplastic agents, suggesting a dual role for SAHA in impairing oncogenic signaling while enhancing therapeutic responsiveness. Conclusions: In conclusion, the capacity of SAHA to modulate secretion and molecular composition of Leukemia-secreted EVs, alongside its direct cytotoxic effects, underscores its potential in combination therapies aimed to overcoming refractory phenotype by targeting EV-mediated communication.
Vorinostat impairs the cancer-driving potential of leukemia-secreted extracellular vesicles
Massaro, Crescenzo;Sgueglia, Giulia;Muro, Annamaria;Giorgio, Cristina;D'Agostino, Erika;Torre, Laura Della;Altucci, Lucia
;
2025
Abstract
Background: Leukemia-secreted extracellular vesicles (EVs) carry biologically active cargo that promotes cancer-supportive mechanisms, including aberrant proliferative signaling, immune escape, and drug resistance. However, how antineoplastic drugs affect EV secretion and cargo sorting remains underexplored. Methods: Leukemia-secreted extracellular vesicles (EVs) were isolated by Differential UltraCentrifugation, and their miRNome and proteomic profiling cargo were analyzed following treatment with SAHA (Vorinostat) in Acute Myeloid Leukemia (AML) and Chronic Myeloid Leukemia (CML). The epigenetic modulation of leukemia-secreted EVs content on interesting key target molecules was validated, and their differential functional impact on cellular viability, cell cycle progression, apoptosis, and tumorigenicity was assessed. Results: SAHA significantly alters the cargo of Leukemia-derived EVs, including miR-194-5p and its target BCLAF1 (mRNA and protein), key regulators of Leukemia cell survival and differentiation. SAHA upregulates miR-194-5p expression while selective loading BCLAF1 into EVs, reducing the miRNA levels in the same compartment. Additionally, SAHA alters miRNA profile and proteomic composition associated with leukemic EVs, altering their tumor-supportive potential, with differential effects observed between AML and CML. Furthermore, in silico predictions suggest that these modified EVs may influence cell sensitivity to antineoplastic agents, suggesting a dual role for SAHA in impairing oncogenic signaling while enhancing therapeutic responsiveness. Conclusions: In conclusion, the capacity of SAHA to modulate secretion and molecular composition of Leukemia-secreted EVs, alongside its direct cytotoxic effects, underscores its potential in combination therapies aimed to overcoming refractory phenotype by targeting EV-mediated communication.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.