Cognitive decline is common in patients with acute or chronic kidney disease. Several areas of brain function can be affected, including short- and long-term memory, attention and inhibitory control, sleep, mood, eating control and motor function. Cognitive decline in kidney disease shares risk factors with cognitive dysfunction in people without kidney disease, such as diabetes, high blood pressure, sedentary lifestyle and unhealthy diet. However, additional kidney-specific risk factors may contribute, such as uremic toxins, electrolyte imbalances, chronic inflammation, acid-base disorders or endocrine dysregulation. Traditional and kidney-specific risk factors may interact to cause damage to the blood-brain barrier, induce vascular damage in the brain and cause neurotoxicity or neuroinflammation. Here, we discuss recent insights into the pathomechanisms of cognitive decline from animal models and novel avenues for prevention and therapy. We focus on a several areas that influence cognition: blood-brain barrier disruption, the role of skeletal muscle, physical activity and the endocrine factor irisin, and the emerging therapeutic role of sodium-glucose cotransporter 2 (SGLT2) inhibitors and glucagon-like peptide 1 (GLP-1) receptor agonists. Taken together, these studies demonstrate the importance of animal models in providing a mechanistic understanding of this complex condition and their potential to explain the mechanisms of novel therapies.

Translational research on cognitive impairment in chronic kidney disease

Capasso, Giovambattista;Barbieri, Michelangela;Capolongo, Giovanna;De, Ananya;Esposito, Fabrizio;Izhar, Raafiah;Mucci, Armida;Paolisso, Giuseppe;Perna, Alessandra;Perrottelli, Andrea;Pezzella, Pasquale;Simeoni, Mariadelina;Tedeschi, Gioacchino;Zacchia, Miriam;Trepiccione, Francesco;Caporusso, Edoardo;Bisecco, Alvino;Iervolino, Anna;Pastore, Annachiara;
2024

Abstract

Cognitive decline is common in patients with acute or chronic kidney disease. Several areas of brain function can be affected, including short- and long-term memory, attention and inhibitory control, sleep, mood, eating control and motor function. Cognitive decline in kidney disease shares risk factors with cognitive dysfunction in people without kidney disease, such as diabetes, high blood pressure, sedentary lifestyle and unhealthy diet. However, additional kidney-specific risk factors may contribute, such as uremic toxins, electrolyte imbalances, chronic inflammation, acid-base disorders or endocrine dysregulation. Traditional and kidney-specific risk factors may interact to cause damage to the blood-brain barrier, induce vascular damage in the brain and cause neurotoxicity or neuroinflammation. Here, we discuss recent insights into the pathomechanisms of cognitive decline from animal models and novel avenues for prevention and therapy. We focus on a several areas that influence cognition: blood-brain barrier disruption, the role of skeletal muscle, physical activity and the endocrine factor irisin, and the emerging therapeutic role of sodium-glucose cotransporter 2 (SGLT2) inhibitors and glucagon-like peptide 1 (GLP-1) receptor agonists. Taken together, these studies demonstrate the importance of animal models in providing a mechanistic understanding of this complex condition and their potential to explain the mechanisms of novel therapies.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/546688
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact