Effective protocols are needed to ensure successful transmission of signals, messages, or parcels through a network of intermediaries. Existing studies often overlook real-world constraints such as limited resources. We investigate the design of efficient and robust transmission strategies in dynamic networks subject to dissipation and resource limited node activity, as in wireless sensor networks. We find that dissipation and randomness can enhance transmission efficiency and network resilience. For a broad family of protocols, a self-organized dynamics assures global connectivity, even in the limit of low density of links, where random networks fail.
Self-organized efficient transmission in dynamic networks
de Arcangelis, Lucilla;Garofalo, Jacopo Alexander;Sarracino, Alessandro;Lippiello, Eugenio
2024
Abstract
Effective protocols are needed to ensure successful transmission of signals, messages, or parcels through a network of intermediaries. Existing studies often overlook real-world constraints such as limited resources. We investigate the design of efficient and robust transmission strategies in dynamic networks subject to dissipation and resource limited node activity, as in wireless sensor networks. We find that dissipation and randomness can enhance transmission efficiency and network resilience. For a broad family of protocols, a self-organized dynamics assures global connectivity, even in the limit of low density of links, where random networks fail.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.