We study a class of Dirichlet boundary value problems whose prototype is \begin{equation}\label{1.2abs} \left\{\begin{array}{ll} -\Delta_p u =h(u)|\nabla u|^p+u^{q-1}+f(x)\, &\quad\hbox{in } \ \Omega\,,\\ u\ge 0\,,&{\quad\hbox{in } \ \Omega}\\ u = 0\,&\quad\hbox{on }\partial \Omega\,,\end{array}\right. \end{equation} where $\Omega$ an open bounded subset of $\mathbb R^N$, $0<1$, $1
Singular elliptic equations having a gradient term with natural growth
A. Ferone;
In corso di stampa
Abstract
We study a class of Dirichlet boundary value problems whose prototype is \begin{equation}\label{1.2abs} \left\{\begin{array}{ll} -\Delta_p u =h(u)|\nabla u|^p+u^{q-1}+f(x)\, &\quad\hbox{in } \ \Omega\,,\\ u\ge 0\,,&{\quad\hbox{in } \ \Omega}\\ u = 0\,&\quad\hbox{on }\partial \Omega\,,\end{array}\right. \end{equation} where $\Omega$ an open bounded subset of $\mathbb R^N$, $0<1$, $1File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.