Background: Sodium-glucose transporter 2 (SGLT2) inhibitors (iSGLT2) are approved medications for type 2 diabetes. Recent studies indicate that iSGLT2 inhibit the growth of some cancer cells. However, the mechanism(s) remains to be fully elucidated. Methods: The SGLT2 levels were determined in normal colon CCD 841 CoN and, HCT 116, HT-29, SW480 and LoVo colorectal cancer (CRC) cell lines by quantitative real-time PCR and western blot. The effect of iSGLT2 canagliflozin on cell proliferation was examined using CCK-8, as its role on CRC cells metabolism and tumorigenesis has been evaluated by XF HS Seahorse Bioanalyzer and flow cytometric analyses. Transient gene silencing experiments and analysis of protein–protein interaction network were conducted to evaluate the SGLT2 molecular targets in CRC cells. Results: Data showed that the treatment with iSGLT2 (50 µM) for 72 h induced cell cycle arrest (p < 0.001), impaired glucose and energetic metabolism (p < 0.001), promoted apoptotic cell death and ER stress flowing into autophagy (p < 0.001) in HCT 116 and HT-29 cells. These cellular events were accompanied by sirtuin 3 (SIRT3) upregulation (p < 0.01), as also supported by SIRT3 transient silencing experiments resulting in the attenuation of the effects of iSGLT2 on the cellular metabolic/energetic alterations and the induction of programmed cell death. The identification and validation of dipeptidyl peptidase 4 (DPP4) as potential common target of SGLT2 and SIRT3 were also assessed. Conclusions: These results deepened knowledge on the iSGLT2 contribution in limiting CRC tumorigenesis unveiling the SGLT2/SIRT3 axis in the cytotoxic mechanisms.
SGLT2 inhibitor promotes mitochondrial dysfunction and ER-phagy in colorectal cancer cells
Anastasio C.;Donisi I.;Del Vecchio V;Sardu C;Marfella R;Balestrieri ML.;D'Onofrio N.
2024
Abstract
Background: Sodium-glucose transporter 2 (SGLT2) inhibitors (iSGLT2) are approved medications for type 2 diabetes. Recent studies indicate that iSGLT2 inhibit the growth of some cancer cells. However, the mechanism(s) remains to be fully elucidated. Methods: The SGLT2 levels were determined in normal colon CCD 841 CoN and, HCT 116, HT-29, SW480 and LoVo colorectal cancer (CRC) cell lines by quantitative real-time PCR and western blot. The effect of iSGLT2 canagliflozin on cell proliferation was examined using CCK-8, as its role on CRC cells metabolism and tumorigenesis has been evaluated by XF HS Seahorse Bioanalyzer and flow cytometric analyses. Transient gene silencing experiments and analysis of protein–protein interaction network were conducted to evaluate the SGLT2 molecular targets in CRC cells. Results: Data showed that the treatment with iSGLT2 (50 µM) for 72 h induced cell cycle arrest (p < 0.001), impaired glucose and energetic metabolism (p < 0.001), promoted apoptotic cell death and ER stress flowing into autophagy (p < 0.001) in HCT 116 and HT-29 cells. These cellular events were accompanied by sirtuin 3 (SIRT3) upregulation (p < 0.01), as also supported by SIRT3 transient silencing experiments resulting in the attenuation of the effects of iSGLT2 on the cellular metabolic/energetic alterations and the induction of programmed cell death. The identification and validation of dipeptidyl peptidase 4 (DPP4) as potential common target of SGLT2 and SIRT3 were also assessed. Conclusions: These results deepened knowledge on the iSGLT2 contribution in limiting CRC tumorigenesis unveiling the SGLT2/SIRT3 axis in the cytotoxic mechanisms.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.