Due to their excellent properties, polyhydroxyalkanoates are gaining increasing recognition in the biodegradable polymer market. These biogenic polyesters are characterized by high biodegradability in multiple environments, overcoming the limitation of composting plants only and their versatility in production. The most consolidated techniques in the literature or the reference legislation for the physical, chemical and mechanical characterisation of the final product are reported since its usability on the market is still linked to its quality, including the biodegradability certificate. This versatility makes polyhydroxyalkanoates a promising prospect with the potential to replace fossil-based thermoplastics sustainably. This review analyses and compares the physical, chemical and mechanical properties of poly-β-hydroxybutyrate and poly-β-hydroxybutyrate-co-β-hydroxyvalerate, indicating their current limitations and strengths. In particular, the copolymer is characterised by better performance in terms of crystallinity, hardness and workability. However, the knowledge in this area is still in its infancy, and the selling prices are too high (9–18 $ kg−1). An analysis of the main extraction techniques, established and in development, is also included. Solvent extraction is currently the most widely used method due to its efficiency and final product quality. In this context, the extraction phase of the biopolymer production process remains a major challenge due to its high costs and the need to use non-halogenated toxic solvents to improve the production of good-quality bioplastics. The review also discusses all fundamental parameters for optimising the process, such as solubility and temperature.

Polyhydroxyalkanoate recovery overview: properties, characterizations, and extraction strategies

Abate T.;Amabile C.;Chianese S.
;
Musmarra D.
2024

Abstract

Due to their excellent properties, polyhydroxyalkanoates are gaining increasing recognition in the biodegradable polymer market. These biogenic polyesters are characterized by high biodegradability in multiple environments, overcoming the limitation of composting plants only and their versatility in production. The most consolidated techniques in the literature or the reference legislation for the physical, chemical and mechanical characterisation of the final product are reported since its usability on the market is still linked to its quality, including the biodegradability certificate. This versatility makes polyhydroxyalkanoates a promising prospect with the potential to replace fossil-based thermoplastics sustainably. This review analyses and compares the physical, chemical and mechanical properties of poly-β-hydroxybutyrate and poly-β-hydroxybutyrate-co-β-hydroxyvalerate, indicating their current limitations and strengths. In particular, the copolymer is characterised by better performance in terms of crystallinity, hardness and workability. However, the knowledge in this area is still in its infancy, and the selling prices are too high (9–18 $ kg−1). An analysis of the main extraction techniques, established and in development, is also included. Solvent extraction is currently the most widely used method due to its efficiency and final product quality. In this context, the extraction phase of the biopolymer production process remains a major challenge due to its high costs and the need to use non-halogenated toxic solvents to improve the production of good-quality bioplastics. The review also discusses all fundamental parameters for optimising the process, such as solubility and temperature.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/524988
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact