We give an upper bound for the least possible energy of a sign-changing solution to the nonlinear scalar field equation -Delta u = f(u), u is an element of D-1,D-2(R-N), where N >= 5 and the nonlinearity f is subcritical at infinity and supercritical near the origin. More precisely, we establish the existence of a nonradial sign-changing solution whose energy is smaller that 12c(0) if N = 5, 6 and smaller than 10c(0) if N >= 7, where c(0) is the ground state energy.

An upper bound for the least energy of a sign-changing solution to a zero mass problem

Pellacci, Benedetta
2024

Abstract

We give an upper bound for the least possible energy of a sign-changing solution to the nonlinear scalar field equation -Delta u = f(u), u is an element of D-1,D-2(R-N), where N >= 5 and the nonlinearity f is subcritical at infinity and supercritical near the origin. More precisely, we establish the existence of a nonradial sign-changing solution whose energy is smaller that 12c(0) if N = 5, 6 and smaller than 10c(0) if N >= 7, where c(0) is the ground state energy.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/523548
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact