Chondroitin sulfate (CS) is a well-known glycosaminoglycan present in a large variety of animal tissues, with an outstanding structural heterogeneity mainly related to molecular weight and sulfation pattern. Recently, few microorganisms, eventually engineered, proved able to synthesize the CS biopolymer backbone, composed of D- glucuronic acid and N-acetyl-D-galactosamine linked through alternating & beta;-(1-3)-and & beta;-(1-4)-glycosidic bonds, and secrete the biopolymers generally unsulfated and possibly decorated with other carbohydrates/molecules. Enzyme catalyzed/assisted methods and chemical tailored protocols allowed to obtain a variety of macromol-ecules not only resembling the natural extractive ones, but even enlarging the access to unnatural structural features. These macromolecules have been investigated for their bioactivity in vitro and in vivo establishing their potentialities in an array of novel applications in the biomedical field. This review aims to present an overview of the advancements in: i) the metabolic engineering strategies and the biotechnological processes towards chon-droitin manufacturing; ii) the chemical approaches applied to obtain specific structural features and targeted decoration of the chondroitin backbone; iii) the biochemical and biological properties of the diverse biotechnological-sourced chondroitin polysaccharides reported so far, unraveling novel fields of applications.

Biotechnological advances in the synthesis of modified chondroitin towards novel biomedical applications

Cimini D.;Schiraldi C.
2023

Abstract

Chondroitin sulfate (CS) is a well-known glycosaminoglycan present in a large variety of animal tissues, with an outstanding structural heterogeneity mainly related to molecular weight and sulfation pattern. Recently, few microorganisms, eventually engineered, proved able to synthesize the CS biopolymer backbone, composed of D- glucuronic acid and N-acetyl-D-galactosamine linked through alternating & beta;-(1-3)-and & beta;-(1-4)-glycosidic bonds, and secrete the biopolymers generally unsulfated and possibly decorated with other carbohydrates/molecules. Enzyme catalyzed/assisted methods and chemical tailored protocols allowed to obtain a variety of macromol-ecules not only resembling the natural extractive ones, but even enlarging the access to unnatural structural features. These macromolecules have been investigated for their bioactivity in vitro and in vivo establishing their potentialities in an array of novel applications in the biomedical field. This review aims to present an overview of the advancements in: i) the metabolic engineering strategies and the biotechnological processes towards chon-droitin manufacturing; ii) the chemical approaches applied to obtain specific structural features and targeted decoration of the chondroitin backbone; iii) the biochemical and biological properties of the diverse biotechnological-sourced chondroitin polysaccharides reported so far, unraveling novel fields of applications.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/518197
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact