In this work, we theoretically investigate a graphene/silicon Schottky photodetector operating at 1550 nm whose performance is enhanced by interference phenomena occurring inside an innovative Fabry-Perot optical microcavity. The structure consists of a hydrogenated amorphous silicon/graphene/crystalline silicon three-layer realized on the top of a double silicon-on-insulator substrate working as a high-reflectivity input mirror. The detection mechanism is based on the internal photoemission effect, and the light-matter interaction is maximized through the concept of confined mode, exploited by embedding the absorbing layer within the photonic structure. The novelty lies in the use of a thick layer of gold as an output reflector. The combination of the amorphous silicon and the metallic mirror is conceived to strongly simplify the manufacturing process by using standard microelectronic technology. Configurations based on both monolayer and bilayer graphene are investigated to optimize the structure in terms of responsivity, bandwidth, and noise-equivalent power. The theoretical results are discussed and compared with the state-of-the-art of similar devices.
Mono- and Bilayer Graphene/Silicon Photodetectors Based on Optical Microcavities Formed by Metallic and Double Silicon-on-Insulator Reflectors: A Theoretical Investigation
Crisci, Teresa;Moretti, Luigi;Casalino, Maurizio
2023
Abstract
In this work, we theoretically investigate a graphene/silicon Schottky photodetector operating at 1550 nm whose performance is enhanced by interference phenomena occurring inside an innovative Fabry-Perot optical microcavity. The structure consists of a hydrogenated amorphous silicon/graphene/crystalline silicon three-layer realized on the top of a double silicon-on-insulator substrate working as a high-reflectivity input mirror. The detection mechanism is based on the internal photoemission effect, and the light-matter interaction is maximized through the concept of confined mode, exploited by embedding the absorbing layer within the photonic structure. The novelty lies in the use of a thick layer of gold as an output reflector. The combination of the amorphous silicon and the metallic mirror is conceived to strongly simplify the manufacturing process by using standard microelectronic technology. Configurations based on both monolayer and bilayer graphene are investigated to optimize the structure in terms of responsivity, bandwidth, and noise-equivalent power. The theoretical results are discussed and compared with the state-of-the-art of similar devices.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.