Nowadays, the increase in antimicrobial-resistant fungi (AMR) is certainly a major health concern, and the development of alternative therapeutic strategies has become crucial. Natural products have been used to treat various infections, and their chemical properties contribute to the performance of their biological activities, such as antifungal action. The various virulence factors and mechanisms of resistance to antifungals contribute to making Candida glabrata one of the most frequent agents of candidiasis. Here we investigate the in vitro and in vivo activity of beta-escin against Candida glabrata. The beta-escin MICs were determined for a reference strain and two clinical isolates of C. glabrata. Furthermore, growth kinetics assays and biofilm inhibition/eradication assays (crystal violet) were performed. The differences in the expression of some anti-biofilm-associated genes were analyzed during biofilm inhibition treatment so that reactive oxygen species could be detected. The efficacy of beta-escin was evaluated in combination with fluconazole, ketoconazole, and itraconazole. In addition, a Galleria mellonella infection model was used for in vivo treatment assays. Results have shown that beta-escin had no toxicity in vitro or in vivo and was able to inhibit or destroy biofilm formation by downregulating some important genes, inducing ROS activity and affecting the membrane integrity of C. glabrata cells. Furthermore, our study suggests that the combination with azoles can have synergistic effects against C. glabrata biofilm. In summary, the discovery of new antifungal drugs against these resistant fungi is crucial and could potentially lead to the development of future treatment strategies.

Effect of Escin Alone or in Combination with Antifungal Agents on Resistant Candida glabrata Biofilms: Mechanisms of Action

Galdiero M.
Supervision
;
2023

Abstract

Nowadays, the increase in antimicrobial-resistant fungi (AMR) is certainly a major health concern, and the development of alternative therapeutic strategies has become crucial. Natural products have been used to treat various infections, and their chemical properties contribute to the performance of their biological activities, such as antifungal action. The various virulence factors and mechanisms of resistance to antifungals contribute to making Candida glabrata one of the most frequent agents of candidiasis. Here we investigate the in vitro and in vivo activity of beta-escin against Candida glabrata. The beta-escin MICs were determined for a reference strain and two clinical isolates of C. glabrata. Furthermore, growth kinetics assays and biofilm inhibition/eradication assays (crystal violet) were performed. The differences in the expression of some anti-biofilm-associated genes were analyzed during biofilm inhibition treatment so that reactive oxygen species could be detected. The efficacy of beta-escin was evaluated in combination with fluconazole, ketoconazole, and itraconazole. In addition, a Galleria mellonella infection model was used for in vivo treatment assays. Results have shown that beta-escin had no toxicity in vitro or in vivo and was able to inhibit or destroy biofilm formation by downregulating some important genes, inducing ROS activity and affecting the membrane integrity of C. glabrata cells. Furthermore, our study suggests that the combination with azoles can have synergistic effects against C. glabrata biofilm. In summary, the discovery of new antifungal drugs against these resistant fungi is crucial and could potentially lead to the development of future treatment strategies.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/516489
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact