Although prostate cancer is one of the most common causes of mortality and morbidity in advancing-age males, early diagnosis improves prognosis and modifies the therapy of choice. The aim of this study was the evaluation of a combined radiomics and machine learning approach on a publicly available dataset in order to distinguish a clinically significant from a clinically non-significant prostate lesion. A total of 299 prostate lesions were included in the analysis. A univariate statistical analysis was performed to prove the goodness of the 60 extracted radiomic features in distinguishing prostate lesions. Then, a 10-fold cross-validation was used to train and test some models and the evaluation metrics were calculated; finally, a hold-out was performed and a wrapper feature selection was applied. The employed algorithms were Naive bayes, K nearest neighbour and some tree-based ones. The tree-based algorithms achieved the highest evaluation metrics, with accuracies over 80%, and area-under-the-curve receiver-operating characteristics below 0.80. Combined machine learning algorithms and radiomics based on clinical, routine, multiparametric, magnetic-resonance imaging were demonstrated to be a useful tool in prostate cancer stratification.

A Combined Radiomics and Machine Learning Approach to Distinguish Clinically Significant Prostate Lesions on a Publicly Available MRI Dataset

Donisi, Leandro;
2021

Abstract

Although prostate cancer is one of the most common causes of mortality and morbidity in advancing-age males, early diagnosis improves prognosis and modifies the therapy of choice. The aim of this study was the evaluation of a combined radiomics and machine learning approach on a publicly available dataset in order to distinguish a clinically significant from a clinically non-significant prostate lesion. A total of 299 prostate lesions were included in the analysis. A univariate statistical analysis was performed to prove the goodness of the 60 extracted radiomic features in distinguishing prostate lesions. Then, a 10-fold cross-validation was used to train and test some models and the evaluation metrics were calculated; finally, a hold-out was performed and a wrapper feature selection was applied. The employed algorithms were Naive bayes, K nearest neighbour and some tree-based ones. The tree-based algorithms achieved the highest evaluation metrics, with accuracies over 80%, and area-under-the-curve receiver-operating characteristics below 0.80. Combined machine learning algorithms and radiomics based on clinical, routine, multiparametric, magnetic-resonance imaging were demonstrated to be a useful tool in prostate cancer stratification.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/497294
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 15
social impact