Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
Background: Various prediction models have been developed to predict the risk of kidney failure in patients with CKD. However, guideline-recommended models have yet to be compared head to head, their validation in patients with advanced CKD is lacking, and most do not account for competing risks.Methods: To externally validate 11 existing models of kidney failure, taking the competing risk of death into account, we included patients with advanced CKD from two large cohorts: the European Quality Study (EQUAL), an ongoing European prospective, multicenter cohort study of older patients with advanced CKD, and the Swedish Renal Registry (SRR), an ongoing registry of nephrology-referred patients with CKD in Sweden. The outcome of the models was kidney failure (defined as RRT-treated ESKD). We assessed model performance with discrimination and calibration.Results: The study included 1580 patients from EQUAL and 13,489 patients from SRR. The average c statistic over the 11 validated models was 0.74 in EQUAL and 0.80 in SRR, compared with 0.89 in previous validations. Most models with longer prediction horizons overestimated the risk of kidney failure considerably. The 5-year Kidney Failure Risk Equation (KFRE) overpredicted risk by 10%-18%. The four- and eight-variable 2-year KFRE and the 4-year Grams model showed excellent calibration and good discrimination in both cohorts.Conclusions: Some existing models can accurately predict kidney failure in patients with advanced CKD. KFRE performed well for a shorter time frame (2 years), despite not accounting for competing events. Models predicting over a longer time frame (5 years) overestimated risk because of the competing risk of death. The Grams model, which accounts for the latter, is suitable for longer-term predictions (4 years).
Kidney Failure Prediction Models: A Comprehensive External Validation Study in Patients with Advanced CKD
Background: Various prediction models have been developed to predict the risk of kidney failure in patients with CKD. However, guideline-recommended models have yet to be compared head to head, their validation in patients with advanced CKD is lacking, and most do not account for competing risks.Methods: To externally validate 11 existing models of kidney failure, taking the competing risk of death into account, we included patients with advanced CKD from two large cohorts: the European Quality Study (EQUAL), an ongoing European prospective, multicenter cohort study of older patients with advanced CKD, and the Swedish Renal Registry (SRR), an ongoing registry of nephrology-referred patients with CKD in Sweden. The outcome of the models was kidney failure (defined as RRT-treated ESKD). We assessed model performance with discrimination and calibration.Results: The study included 1580 patients from EQUAL and 13,489 patients from SRR. The average c statistic over the 11 validated models was 0.74 in EQUAL and 0.80 in SRR, compared with 0.89 in previous validations. Most models with longer prediction horizons overestimated the risk of kidney failure considerably. The 5-year Kidney Failure Risk Equation (KFRE) overpredicted risk by 10%-18%. The four- and eight-variable 2-year KFRE and the 4-year Grams model showed excellent calibration and good discrimination in both cohorts.Conclusions: Some existing models can accurately predict kidney failure in patients with advanced CKD. KFRE performed well for a shorter time frame (2 years), despite not accounting for competing events. Models predicting over a longer time frame (5 years) overestimated risk because of the competing risk of death. The Grams model, which accounts for the latter, is suitable for longer-term predictions (4 years).
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/493648
Citazioni
15
58
ND
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.
Errore
Errore
Informativa cookie
Utilizziamo cookie di prima e di terza parte per garantire la funzionalità del sito e per mostrare "le citazioni sociali (PLUMX)", "le pubblicazioni suggerite (core recommender)", "il grafico delle citazioni" e "le licenze dei fulltext". I Cookie di terze parti sono disattivati di default salvo esplicito consenso (Accetta tutti).
Preferenze cookie
Utilizzo dei cookie?
Utilizziamo i cookie per consentire il funzionamento del sito e per migliorare la tua esperienza online. Puoi scegliere per ogni categoria se abilitarli/disabilitarli quando vuoi. Per maggiori dettagli relativi ai cookie ed altri dati sensibili, puoi leggere la cookie policy e la privacy policy integrale.
Questi cookie sono essenziali per il funzionamento del nostro sito. Senza questi cookie, il sito potrebbe non funzionare correttamente.
Questi cookie consentono al sito di ricordare le scelte che hai eseguito in precedenza
Nome
Dominio
Durata
Descrizione
_pk.*
matomo.valueforyou.cineca.it
sessione
permette il tracciamento delle scelte fatte dall'utente
Questi cookie consentono al sito di accedere a funzionalità esterne
Nome
Dominio
Durata
Descrizione
s_.*
plu.mx
sessione
recupero grafico citazioni sociali da plumx
A_.*
core.ac.uk
7 giorni
recupero pubblicazioni consigliate per il pannello core-recommander
GS_.*
gstatic.com
richiesta http
visualizza grafico citazioni
CC_.*
creativecommons.org
richiesta http
visualizza licenza bitstream
Maggiori informazioni
Per qualsiasi domanda in relazione alle nostre policy sui cookie e sulle tue scelte, puoi visualizzare l'informativa completa a questo url.