This contribution presents the preparation and characterization of new geopolymer-based mortars obtained from recycling waste deriving from the production process and the “end-of-life” of porcelain stoneware products. Structural, morphological, and mechanical studies carried out on different kinds of mortars prepared by using several types of by-products (i.e., pressed burnt and extruded ceramic waste, raw pressed and gypsum resulting from exhausted moulds) point out that these systems can be easily cast, also in complex shapes, and show a more consistent microstructure with respect to the geopolymer paste, with a reduced amount of microcracks. Moreover, the excellent adhesion of these materials to common substrates such as pottery and earthenware, even for an elevated concentration of filler, suggests their use in the field of technical-artistic value-added applications, such as restoration, conservation, and/or rehabilitation of historic monuments, or simply as materials for building revetments. For all these reasons, the proposed materials could represent valuable candidates to try to overcome some problems experienced in the cultural heritage sector concerning the selection of environmentally friendly materials that simultaneously meet art and design technical requirements.

Development of Geopolymer-Based Materials with Ceramic Waste for Artistic and Restoration Applications

Ricciotti L.;
2022

Abstract

This contribution presents the preparation and characterization of new geopolymer-based mortars obtained from recycling waste deriving from the production process and the “end-of-life” of porcelain stoneware products. Structural, morphological, and mechanical studies carried out on different kinds of mortars prepared by using several types of by-products (i.e., pressed burnt and extruded ceramic waste, raw pressed and gypsum resulting from exhausted moulds) point out that these systems can be easily cast, also in complex shapes, and show a more consistent microstructure with respect to the geopolymer paste, with a reduced amount of microcracks. Moreover, the excellent adhesion of these materials to common substrates such as pottery and earthenware, even for an elevated concentration of filler, suggests their use in the field of technical-artistic value-added applications, such as restoration, conservation, and/or rehabilitation of historic monuments, or simply as materials for building revetments. For all these reasons, the proposed materials could represent valuable candidates to try to overcome some problems experienced in the cultural heritage sector concerning the selection of environmentally friendly materials that simultaneously meet art and design technical requirements.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/490574
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact