The COVID-19 pandemic has emphasized the need for portable, small-size, low-cost, simple to use, and highly sensitive sensors able to measure a specific substance, with the capability of the transmission over the Internet of statistical data, such as in this specific case on the spread of the SARS-CoV-2 virions. Moreover, to resolve the COVID-19 emergency, the possibility of making selective SARS-CoV-2 measurements in different aqueous matrices could be advantageous. Thus, the realization of rapid and innovative point-of-care diagnostics tests has become a global priority. In response to the current need for quick, highly sensitive and on-site detection of the SARS-CoV-2 virions in different aqueous solutions, two different nanolayer biorecognition systems separately combined with an adaptable optical fiber sensor have been reported in this work. More specifically, two SARS-CoV-2 sensors have been developed and tested by exploiting a plasmonic plastic optical fiber (POF) sensor coupled with two different receptors, both designed for the specific recognition of the SARS-CoV-2 Spike protein; one is aptamer-based and the other one Molecular Imprinted Polymer-based. The preliminary tests on SARS-CoV-2 virions, performed on samples of nasopharyngeal (NP) swabs in universal transport medium (UTM), were compared with data obtained using reverse-transcription polymerase chain reaction (RT-PCR). According to these preliminary experimental results obtained exploiting both receptors, the sensitivity of the proposed SARS-CoV-2 optical fiber sensors proved to be high enough to detect virions. Furthermore, a relatively fast response time (a few minutes) to detect virions was obtained without additional reagents, with the capability to transmit the data via the Internet automatically.

(INVITED)Quantitative detection of SARS-CoV-2 virions in aqueous mediums by IoT optical fiber sensors

Cennamo N.
;
D'Agostino G.;Arcadio F.;Perri C.;Coppola N.;Angelillo I. F.;Altucci L.;Zeni L.
2021

Abstract

The COVID-19 pandemic has emphasized the need for portable, small-size, low-cost, simple to use, and highly sensitive sensors able to measure a specific substance, with the capability of the transmission over the Internet of statistical data, such as in this specific case on the spread of the SARS-CoV-2 virions. Moreover, to resolve the COVID-19 emergency, the possibility of making selective SARS-CoV-2 measurements in different aqueous matrices could be advantageous. Thus, the realization of rapid and innovative point-of-care diagnostics tests has become a global priority. In response to the current need for quick, highly sensitive and on-site detection of the SARS-CoV-2 virions in different aqueous solutions, two different nanolayer biorecognition systems separately combined with an adaptable optical fiber sensor have been reported in this work. More specifically, two SARS-CoV-2 sensors have been developed and tested by exploiting a plasmonic plastic optical fiber (POF) sensor coupled with two different receptors, both designed for the specific recognition of the SARS-CoV-2 Spike protein; one is aptamer-based and the other one Molecular Imprinted Polymer-based. The preliminary tests on SARS-CoV-2 virions, performed on samples of nasopharyngeal (NP) swabs in universal transport medium (UTM), were compared with data obtained using reverse-transcription polymerase chain reaction (RT-PCR). According to these preliminary experimental results obtained exploiting both receptors, the sensitivity of the proposed SARS-CoV-2 optical fiber sensors proved to be high enough to detect virions. Furthermore, a relatively fast response time (a few minutes) to detect virions was obtained without additional reagents, with the capability to transmit the data via the Internet automatically.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/479157
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact