Plasmonic bio/chemical sensing based on optical fibers combined with molecularly imprinted nanoparticles (nanoMIPs), which are polymeric receptors prepared by a template-assisted synthesis, has been demonstrated as a powerful method to attain ultra-low detection limits, particularly when exploiting soft nanoMIPs, which are known to deform upon analyte binding. This work presents the development of a surface plasmon resonance (SPR) sensor in silica light-diffusing fibers (LDFs) functionalized with a specific nanoMIP receptor, entailed for the recognition of the protein human serum transferrin (HTR). Despite their great versatility, to date only SPR-LFDs functionalized with antibodies have been reported. Here, the innovative combination of an SPR-LFD platform and nanoMIPs led to the development of a sensor with an ultra-low limit of detection (LOD), equal to about 4 fM, and selective for its target analyte HTR. It is worth noting that the SPR-LDF-nanoMIP sensor was mounted within a specially designed 3D-printed holder yielding a measurement cell suitable for a rapid and reliable setup, and easy for the scaling up of the measurements. Moreover, the fabrication process to realize the SPR platform is minimal, requiring only a metal deposition step.

A Plasmonic Biosensor Based on Light-Diffusing Fibers Functionalized with Molecularly Imprinted Nanoparticles for Ultralow Sensing of Proteins

Arcadio F.;Zeni L.;Cennamo N.
2022

Abstract

Plasmonic bio/chemical sensing based on optical fibers combined with molecularly imprinted nanoparticles (nanoMIPs), which are polymeric receptors prepared by a template-assisted synthesis, has been demonstrated as a powerful method to attain ultra-low detection limits, particularly when exploiting soft nanoMIPs, which are known to deform upon analyte binding. This work presents the development of a surface plasmon resonance (SPR) sensor in silica light-diffusing fibers (LDFs) functionalized with a specific nanoMIP receptor, entailed for the recognition of the protein human serum transferrin (HTR). Despite their great versatility, to date only SPR-LFDs functionalized with antibodies have been reported. Here, the innovative combination of an SPR-LFD platform and nanoMIPs led to the development of a sensor with an ultra-low limit of detection (LOD), equal to about 4 fM, and selective for its target analyte HTR. It is worth noting that the SPR-LDF-nanoMIP sensor was mounted within a specially designed 3D-printed holder yielding a measurement cell suitable for a rapid and reliable setup, and easy for the scaling up of the measurements. Moreover, the fabrication process to realize the SPR platform is minimal, requiring only a metal deposition step.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/479155
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact