The interaction between surface water and groundwater constitutes a critical process to understand the quantitative and qualitative regime of dependent hydrosystems. A multi-scale approach combining cross-disciplinary techniques can considerably reduce uncertainties and provide an optimal understanding of groundwater and surface water exchanges. The simulation process constitutes the most effective tool for such analysis; however, its implementation requires a variety of data, a detailed analysis of the hydrosystem, and time to finalize a reliable solution. The results of the simulation process contribute to the raising of awareness for water protection and the application of better management strategies. Knowledge of models' parameters has great importance to ensure reliable results in the modeling process. In this study, a literature overview of modeling applications in groundwater - surface water interaction is provided. In this context, a comprehensive and holistic approach to groundwater and surface water simulation codes is here presented; results, case studies, and future challenges are also discussed. The main finding of the analysis highlights uncertainties and gaps in the modeling process due to the lack of high frequency and depth dependent field measurements. In many studies, authors underestimate the importance of the hydrogeological regime, and the discretization of hydraulic parameters is often lumped in a simplified manner. The modeling ethics in terms of data transparency and openness should be widely considered to improve the modeling results. The current study contributes to overcome common weaknesses of model applications, fulfils gaps in the existing literature, and highlights the importance of the modeling process in planning sustainable management of water resources.

Modeling groundwater and surface water interaction: An overview of current status and future challenges

Ntona, Maria Margarita;Busico, Gianluigi;Mastrocicco, Micòl;
2022

Abstract

The interaction between surface water and groundwater constitutes a critical process to understand the quantitative and qualitative regime of dependent hydrosystems. A multi-scale approach combining cross-disciplinary techniques can considerably reduce uncertainties and provide an optimal understanding of groundwater and surface water exchanges. The simulation process constitutes the most effective tool for such analysis; however, its implementation requires a variety of data, a detailed analysis of the hydrosystem, and time to finalize a reliable solution. The results of the simulation process contribute to the raising of awareness for water protection and the application of better management strategies. Knowledge of models' parameters has great importance to ensure reliable results in the modeling process. In this study, a literature overview of modeling applications in groundwater - surface water interaction is provided. In this context, a comprehensive and holistic approach to groundwater and surface water simulation codes is here presented; results, case studies, and future challenges are also discussed. The main finding of the analysis highlights uncertainties and gaps in the modeling process due to the lack of high frequency and depth dependent field measurements. In many studies, authors underestimate the importance of the hydrogeological regime, and the discretization of hydraulic parameters is often lumped in a simplified manner. The modeling ethics in terms of data transparency and openness should be widely considered to improve the modeling results. The current study contributes to overcome common weaknesses of model applications, fulfils gaps in the existing literature, and highlights the importance of the modeling process in planning sustainable management of water resources.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/477588
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 36
  • ???jsp.display-item.citation.isi??? ND
social impact