This paper offers a supervised classification strategy that combines functional data analysis with unsupervised and supervised classification methods. Specifically, a two-steps classification technique for high-dimensional time series treated as functional data is suggested. The first stage is based on extracting additional knowledge from the data using unsupervised classification employing suitable metrics. The second phase applies functional supervised classification of the new patterns learned via appropriate basis representations. The experiments on ECG data and comparison with the classical approaches show the effectiveness of the proposed technique and exciting refinement in terms of accuracy. A simulation study with six scenarios is also offered to demonstrate the efficacy of the suggested strategy. The results reveal that this line of investigation is compelling and worthy of further development.

Combining unsupervised and supervised learning techniques for enhancing the performance of functional data classifiers

maturo, fabrizio
;
verde, rosanna
2024

Abstract

This paper offers a supervised classification strategy that combines functional data analysis with unsupervised and supervised classification methods. Specifically, a two-steps classification technique for high-dimensional time series treated as functional data is suggested. The first stage is based on extracting additional knowledge from the data using unsupervised classification employing suitable metrics. The second phase applies functional supervised classification of the new patterns learned via appropriate basis representations. The experiments on ECG data and comparison with the classical approaches show the effectiveness of the proposed technique and exciting refinement in terms of accuracy. A simulation study with six scenarios is also offered to demonstrate the efficacy of the suggested strategy. The results reveal that this line of investigation is compelling and worthy of further development.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/473428
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 4
social impact