Bacterial ocular infections are a worldwide health problem and, if untreated, can damage the structure of the eye and contribute to permanent disability. Knowledge of the prevalence and antimicrobial susceptibility patterns of the main causative agents involved in ocular infections is necessary for defining an optimal antibiotic therapy. The aim of this study was to analyse bacterial species involved in ocular infections and the antimicrobial susceptibility patterns. Conjunctival swab samples were collected from patients with bacterial conjunctivitis at the University Hospital San Giovanni di Dio e Ruggi d’Aragona between January 2015 and December 2019. The identification and antibiotic sensitivity tests were performed using the VITEK 2 system. A total of 281 causative agents of ocular infections were isolated, 81.8% of which were Gram-positive bacteria. Coagulase-negative staphylococci (CoNS) were the most commonly isolated species among Gram-positive bacteria, followed by Staphylococcus aureus. In contrast, Pseudomonas spp. and Escherichia coli were the main species isolated among Gram-negative bacteria (18.2%). Overall, linezolid, teicoplanin, tigecycline and vancomycin were the most effective antimicrobials. Analysis of resistance rates over time highlighted increasing resistance for azithromycin, clarithromycin and erythromycin among CoNS, and clindamycin and erythromycin among Staphylococcus aureus. This study has identified the profiles of the major pathogens involved in ocular infection and their susceptibility patterns, which will help improve the treatments and the choice of antibiotics in ocular infections.
Prevalence and Antimicrobial Resistance of Causative Agents to Ocular Infections
Manente R.;Santella B.;Borrelli A.;Capunzo M.;Galdiero M.;
2022
Abstract
Bacterial ocular infections are a worldwide health problem and, if untreated, can damage the structure of the eye and contribute to permanent disability. Knowledge of the prevalence and antimicrobial susceptibility patterns of the main causative agents involved in ocular infections is necessary for defining an optimal antibiotic therapy. The aim of this study was to analyse bacterial species involved in ocular infections and the antimicrobial susceptibility patterns. Conjunctival swab samples were collected from patients with bacterial conjunctivitis at the University Hospital San Giovanni di Dio e Ruggi d’Aragona between January 2015 and December 2019. The identification and antibiotic sensitivity tests were performed using the VITEK 2 system. A total of 281 causative agents of ocular infections were isolated, 81.8% of which were Gram-positive bacteria. Coagulase-negative staphylococci (CoNS) were the most commonly isolated species among Gram-positive bacteria, followed by Staphylococcus aureus. In contrast, Pseudomonas spp. and Escherichia coli were the main species isolated among Gram-negative bacteria (18.2%). Overall, linezolid, teicoplanin, tigecycline and vancomycin were the most effective antimicrobials. Analysis of resistance rates over time highlighted increasing resistance for azithromycin, clarithromycin and erythromycin among CoNS, and clindamycin and erythromycin among Staphylococcus aureus. This study has identified the profiles of the major pathogens involved in ocular infection and their susceptibility patterns, which will help improve the treatments and the choice of antibiotics in ocular infections.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.