A numerical analysis on a two-dimensional steady state forced convection inside a solar collector with direct absorption due to a nanofluid composed of water and nanoparticles of carbon nanohorns is carried out. The analysis allows to provide the main fluid flow and thermal characteristics of a simple flat solar collector with a distance between the glass and the collecting plate of 1.2 mm and a length of 1.0 m. The solar collector presents heat losses from the upper wall towards the ambient by an external surface heat transfer coefficient. The governing flow equations for the nanofluid are written assuming the single-phase flow and the heat transfer due to the radiation, for the local absorption of nanoparticles, is evaluated by the non-grey discrete ordinates method. The carbon nanohorns optical and thermal properties are estimated by the data available in literature. The finite volume method is used to solve the problem and the results are carried out employing the ANSYS-FLUENT code. The results are given in terms of temperature and velocity fields and transversal profiles inside the channel for different values of mass flow rates, solar irradiance, volumetric nanoparticle concentrations and assigned values of external surface heat transfer coefficient and temperature.

Thermal behavior of a flat-plate direct absorption with water-nanohorn mixture

Buonomo B.;Manca O.
;
Nardini S.
2021

Abstract

A numerical analysis on a two-dimensional steady state forced convection inside a solar collector with direct absorption due to a nanofluid composed of water and nanoparticles of carbon nanohorns is carried out. The analysis allows to provide the main fluid flow and thermal characteristics of a simple flat solar collector with a distance between the glass and the collecting plate of 1.2 mm and a length of 1.0 m. The solar collector presents heat losses from the upper wall towards the ambient by an external surface heat transfer coefficient. The governing flow equations for the nanofluid are written assuming the single-phase flow and the heat transfer due to the radiation, for the local absorption of nanoparticles, is evaluated by the non-grey discrete ordinates method. The carbon nanohorns optical and thermal properties are estimated by the data available in literature. The finite volume method is used to solve the problem and the results are carried out employing the ANSYS-FLUENT code. The results are given in terms of temperature and velocity fields and transversal profiles inside the channel for different values of mass flow rates, solar irradiance, volumetric nanoparticle concentrations and assigned values of external surface heat transfer coefficient and temperature.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/470103
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact