A thermohygrometer is an instrument that is able to measure relative humidity and air temperature, which are two of the fundamental parameters to estimate human thermal comfort. To date, the market offers small and low-cost solutions for this instrument, providing the opportunity to bring electronics closer to the end-user and contributing to the proliferation of a variety of applications and open-source projects. One of the most critical aspects of using low-cost instruments is their measurement reliability. This study aims to determine the measurement performance of seven low-cost thermohygrometers throughout a 10-fold repeatability test in a climatic chamber with air temperatures ranging from about −10 to +40 °C and relative humidity from approximately 0 to 90%. Compared with reference sensors, their measurements show good linear behavior with some exceptions. A sub-dataset of the data collected is then used to calculate two of the most used indoor (PMV) and outdoor (UTCI) comfort indexes to define discrepancies between the indexes calculated with the data from the reference sensors and the low-cost sensors. The results suggest that although six of the seven low-cost sensors have accuracy that meets the requirements of ISO 7726, in some cases, they do not provide acceptable comfort indicators if the values are taken as they are. The linear regression analysis suggests that it is possible to correct the output to reduce the difference between reference and low-cost sensors, enabling the use of low-cost sensors to assess indoor thermal comfort in terms of PMV and outdoor thermal stress in UTCI and encouraging a more conscious use for environmental and human-centric research.

Low-Cost Thermohygrometers to Assess Thermal Comfort in the Built Environment: A Laboratory Evaluation of Their Measurement Performance

Salamone, F.;Sibilio, S.;Masullo, M.
2022

Abstract

A thermohygrometer is an instrument that is able to measure relative humidity and air temperature, which are two of the fundamental parameters to estimate human thermal comfort. To date, the market offers small and low-cost solutions for this instrument, providing the opportunity to bring electronics closer to the end-user and contributing to the proliferation of a variety of applications and open-source projects. One of the most critical aspects of using low-cost instruments is their measurement reliability. This study aims to determine the measurement performance of seven low-cost thermohygrometers throughout a 10-fold repeatability test in a climatic chamber with air temperatures ranging from about −10 to +40 °C and relative humidity from approximately 0 to 90%. Compared with reference sensors, their measurements show good linear behavior with some exceptions. A sub-dataset of the data collected is then used to calculate two of the most used indoor (PMV) and outdoor (UTCI) comfort indexes to define discrepancies between the indexes calculated with the data from the reference sensors and the low-cost sensors. The results suggest that although six of the seven low-cost sensors have accuracy that meets the requirements of ISO 7726, in some cases, they do not provide acceptable comfort indicators if the values are taken as they are. The linear regression analysis suggests that it is possible to correct the output to reduce the difference between reference and low-cost sensors, enabling the use of low-cost sensors to assess indoor thermal comfort in terms of PMV and outdoor thermal stress in UTCI and encouraging a more conscious use for environmental and human-centric research.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11591/469714
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact