Biomaterial‐based drug delivery systems for a controlled drug release are drawing in‐ creasing attention thanks to their possible pharmaceutical and biomedical applications. It is im‐ portant to control the local administration of drugs, especially when the drug exhibits problems diffusing across biological barriers. Thus, in an appropriate concentration, it would be released in situ, reducing side effects due to interactions with the biological environment after implantation. A theoretical study based on Molecular Mechanics and Molecular Dynamics methods is performed to investigate possible surface interactions between the amorphous SiO2 surface and the ketoprofen molecules, an anti‐inflammatory drug, considering the role of drug concentration. These theoretical results are compared with experimental data obtained by analyzing, through Fourier transform infrared spectroscopy (FT‐IR), the interaction between the SiO2 amorphous surface and two per‐ centages of the ketoprofen drug entrapped in a silica matrix obtained via the sol–gel method and dried materials. The loaded drug in these amorphous bioactive material forms hydrogen bonds with the silica surface, as found in this theoretical study. The surface interactions are essential to have a new generation of biomaterials not only important for biocompatibility, with specific structural and functional properties, but also able to incorporate anti‐inflammatory agents for re‐ lease into the human body

Surface Interactions between Ketoprofen and Silica‐Based Biomaterials as Drug Delivery System Synthesized Via Sol–Gel: A Molecular Dynamics Study

Michelina Catauro
Supervision
2022

Abstract

Biomaterial‐based drug delivery systems for a controlled drug release are drawing in‐ creasing attention thanks to their possible pharmaceutical and biomedical applications. It is im‐ portant to control the local administration of drugs, especially when the drug exhibits problems diffusing across biological barriers. Thus, in an appropriate concentration, it would be released in situ, reducing side effects due to interactions with the biological environment after implantation. A theoretical study based on Molecular Mechanics and Molecular Dynamics methods is performed to investigate possible surface interactions between the amorphous SiO2 surface and the ketoprofen molecules, an anti‐inflammatory drug, considering the role of drug concentration. These theoretical results are compared with experimental data obtained by analyzing, through Fourier transform infrared spectroscopy (FT‐IR), the interaction between the SiO2 amorphous surface and two per‐ centages of the ketoprofen drug entrapped in a silica matrix obtained via the sol–gel method and dried materials. The loaded drug in these amorphous bioactive material forms hydrogen bonds with the silica surface, as found in this theoretical study. The surface interactions are essential to have a new generation of biomaterials not only important for biocompatibility, with specific structural and functional properties, but also able to incorporate anti‐inflammatory agents for re‐ lease into the human body
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/468418
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact