This work evaluates the effectiveness of commonly adopted local damage evolution methods and failure criteria in finite element analysis for the simulation of intralaminar damage propagation in composites under static loading conditions. The proposed numerical model is based on a User Defined Material subroutine (USERMAT) implemented in Ansys. This model is used to predict the evolution of damage within each specific lamina of a composite laminate by introducing both sudden and gradual degradation rules. The main purpose of the simulations is to quantitatively assess the influence of the adopted failure criteria in conjunction with degradation laws on the accuracy of the numerical predictions in terms of damage evolution and failure load. The mechanical behavior of an open hole tension specimen and of a notched stiffened composite panel under shear loading conditions have been numerically simulated by Progressive Damage Models (PDM). Different failure criteria have been implemented in the developed Ansys USERMAT, together with sudden and gradual degradation rules based on the Continuum Damage Mechanics (CDM) approach. Numerical results have been validated against experimental data to assess the effects of the different failure criteria and damage evolution law on the global mechanical response and local damage predictions in composite laminates.

Influence of failure criteria and intralaminar damage progression numerical models on the prediction of the mechanical behavior of composite laminates

Riccio A.;Acanfora V.;Sellitto A.;Russo A.
2021

Abstract

This work evaluates the effectiveness of commonly adopted local damage evolution methods and failure criteria in finite element analysis for the simulation of intralaminar damage propagation in composites under static loading conditions. The proposed numerical model is based on a User Defined Material subroutine (USERMAT) implemented in Ansys. This model is used to predict the evolution of damage within each specific lamina of a composite laminate by introducing both sudden and gradual degradation rules. The main purpose of the simulations is to quantitatively assess the influence of the adopted failure criteria in conjunction with degradation laws on the accuracy of the numerical predictions in terms of damage evolution and failure load. The mechanical behavior of an open hole tension specimen and of a notched stiffened composite panel under shear loading conditions have been numerically simulated by Progressive Damage Models (PDM). Different failure criteria have been implemented in the developed Ansys USERMAT, together with sudden and gradual degradation rules based on the Continuum Damage Mechanics (CDM) approach. Numerical results have been validated against experimental data to assess the effects of the different failure criteria and damage evolution law on the global mechanical response and local damage predictions in composite laminates.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/466357
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 15
social impact