The proliferation of info-entertainment systems in nowadays vehicles has provided a really cheap and easy-to-deploy platform with the ability to gather information about the vehicle under analysis. With the purpose to provide an architecture to increase safety and security in automotive context, in this paper we propose a fully connected neural network architecture considering positionbased features aimed to detect in real-time: (i) the driver, (ii) the driving style and (iii) the path. The experimental analysis performed on real-world data shows that the proposed method obtains encouraging results.
Neural networks for driver behavior analysis
Marulli F.
Methodology
;
2021
Abstract
The proliferation of info-entertainment systems in nowadays vehicles has provided a really cheap and easy-to-deploy platform with the ability to gather information about the vehicle under analysis. With the purpose to provide an architecture to increase safety and security in automotive context, in this paper we propose a fully connected neural network architecture considering positionbased features aimed to detect in real-time: (i) the driver, (ii) the driving style and (iii) the path. The experimental analysis performed on real-world data shows that the proposed method obtains encouraging results.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.