The increasing complexity of modern ground vehicles is making crucial the role of control for improving energetic efficiency, comfort and performance. At the same time, the control software must be frequently updated in order to let the vehicle respond safely and efficiently within more sophisticated environ- ments and to optimize the operations when new vehicle components are integrated. In this framework real-time hardware-in-the-loop simulations represent a fundamental tool for supporting the verification and validation processes of the control software and hardware. In this chapter a railway case study will be presented. The mathematical models of the most relevant electromechanical components of the vehicle powertrain are presented: the pantograph connected to an ideal overhead line with continuous voltage; the electrical components of a pre-charge circuit, the line filter and the braking chopper; the three-phase voltage source inverter and the induction motor; and, finally, the mechanical transmission system, including its interactions with the rail. Then the issues related to the real-time simulation of the locomotive components models are discussed, concentrating on challenges related to the stiff nature of the dynamic equations and on their numerical integration by combining field programmable gate array.

Real-Time Hardware-in-the-Loop in Railway: Simulations for Testing Control Software of Electromechanical Train Components

Baccari S
In corso di stampa

Abstract

The increasing complexity of modern ground vehicles is making crucial the role of control for improving energetic efficiency, comfort and performance. At the same time, the control software must be frequently updated in order to let the vehicle respond safely and efficiently within more sophisticated environ- ments and to optimize the operations when new vehicle components are integrated. In this framework real-time hardware-in-the-loop simulations represent a fundamental tool for supporting the verification and validation processes of the control software and hardware. In this chapter a railway case study will be presented. The mathematical models of the most relevant electromechanical components of the vehicle powertrain are presented: the pantograph connected to an ideal overhead line with continuous voltage; the electrical components of a pre-charge circuit, the line filter and the braking chopper; the three-phase voltage source inverter and the induction motor; and, finally, the mechanical transmission system, including its interactions with the rail. Then the issues related to the real-time simulation of the locomotive components models are discussed, concentrating on challenges related to the stiff nature of the dynamic equations and on their numerical integration by combining field programmable gate array.
In corso di stampa
Baccari, S
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/463117
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact