Kidney structural abnormalities are common features of Bardet-Biedl syndrome (BBS) patients that lead to a progressive decline in renal function. Magnetic resonance diffusion tensor imaging (DTI) provides useful information on renal microstructures but it has not been applied to these patients. This study investigated using DTI to detect renal abnormalities in BBS patients with no overt renal dysfunction. Ten BBS subjects with estimated glomerular filtration rates over 60 ml/min/1.73m2 and 14 individuals matched for age, gender, body mass index and renal function were subjected to high-field DTI. Fractional anisotropy (FA), and mean, radial and axial diffusivity were evaluated from renal cortex and medulla. Moreover, the corticomedullary differentiation of each DTI parameter was compared between groups. Only cortical FA statistically differed between BBS patients and controls (p = 0.033), but all the medullary DTI parameters discriminated between the two groups with lower FA (p < 0.001) and axial diffusivity (p = 0.021) and higher mean diffusivity (p = 0.043) and radial diffusivity (p < 0.001) in BBS patients compared with controls. Corticomedullary differentiation values were significantly reduced in BBS patients. Thus, DTI is a valuable tool for investigating microstructural alterations in renal disorders when kidney functionality is preserved.

Diffusion tensor imaging for the study of early renal dysfunction in patients affected by bardet-biedl syndrome

Zacchia M.;Cavaliere C.;
2021

Abstract

Kidney structural abnormalities are common features of Bardet-Biedl syndrome (BBS) patients that lead to a progressive decline in renal function. Magnetic resonance diffusion tensor imaging (DTI) provides useful information on renal microstructures but it has not been applied to these patients. This study investigated using DTI to detect renal abnormalities in BBS patients with no overt renal dysfunction. Ten BBS subjects with estimated glomerular filtration rates over 60 ml/min/1.73m2 and 14 individuals matched for age, gender, body mass index and renal function were subjected to high-field DTI. Fractional anisotropy (FA), and mean, radial and axial diffusivity were evaluated from renal cortex and medulla. Moreover, the corticomedullary differentiation of each DTI parameter was compared between groups. Only cortical FA statistically differed between BBS patients and controls (p = 0.033), but all the medullary DTI parameters discriminated between the two groups with lower FA (p < 0.001) and axial diffusivity (p = 0.021) and higher mean diffusivity (p = 0.043) and radial diffusivity (p < 0.001) in BBS patients compared with controls. Corticomedullary differentiation values were significantly reduced in BBS patients. Thus, DTI is a valuable tool for investigating microstructural alterations in renal disorders when kidney functionality is preserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/458937
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact