Introduction: Electrophysiological (EEG) abnormalities in subjects with schizophrenia have been largely reported. In the last decades, research has shifted to the identification of electrophysiological alterations in the prodromal and early phases of the disorder, focusing on the prediction of clinical and functional outcome. The identification of neuronal aberrations in subjects with a first episode of psychosis (FEP) and in those at ultra high-risk (UHR) or clinical high-risk (CHR) to develop a psychosis is crucial to implement adequate interventions, reduce the rate of transition to psychosis, as well as the risk of irreversible functioning impairment. The aim of the review is to provide an up-to-date synthesis of the electrophysiological findings in the at-risk mental state and early stages of schizophrenia. Methods: A systematic review of English articles using Pubmed, Scopus, and PsychINFO was undertaken in July 2020. Additional studies were identified by hand-search. Electrophysiological studies that included at least one group of FEP or subjects at risk to develop psychosis, compared to healthy controls (HCs), were considered. The heterogeneity of the studies prevented a quantitative synthesis. Results: Out of 319 records screened, 133 studies were included in a final qualitative synthesis. Included studies were mainly carried out using frequency analysis, microstates and event-related potentials. The most common findings included an increase in delta and gamma power, an impairment in sensory gating assessed through P50 and N100 and a reduction of Mismatch Negativity and P300 amplitude in at-risk mental state and early stages of schizophrenia. Progressive changes in some of these electrophysiological measures were associated with transition to psychosis and disease course. Heterogeneous data have been reported for indices evaluating synchrony, connectivity, and evoked-responses in different frequency bands. Conclusions: Multiple EEG-indices were altered during at-risk mental state and early stages of schizophrenia, supporting the hypothesis that cerebral network dysfunctions appear already before the onset of the disorder. Some of these alterations demonstrated association with transition to psychosis or poor functional outcome. However, heterogeneity in subjects' inclusion criteria, clinical measures and electrophysiological methods prevents drawing solid conclusions. Large prospective studies are needed to consolidate findings concerning electrophysiological markers of clinical and functional outcome.

EEG-Based Measures in At-Risk Mental State and Early Stages of Schizophrenia: A Systematic Review

Perrottelli A.;Giordano G. M.;Mucci A.
2021

Abstract

Introduction: Electrophysiological (EEG) abnormalities in subjects with schizophrenia have been largely reported. In the last decades, research has shifted to the identification of electrophysiological alterations in the prodromal and early phases of the disorder, focusing on the prediction of clinical and functional outcome. The identification of neuronal aberrations in subjects with a first episode of psychosis (FEP) and in those at ultra high-risk (UHR) or clinical high-risk (CHR) to develop a psychosis is crucial to implement adequate interventions, reduce the rate of transition to psychosis, as well as the risk of irreversible functioning impairment. The aim of the review is to provide an up-to-date synthesis of the electrophysiological findings in the at-risk mental state and early stages of schizophrenia. Methods: A systematic review of English articles using Pubmed, Scopus, and PsychINFO was undertaken in July 2020. Additional studies were identified by hand-search. Electrophysiological studies that included at least one group of FEP or subjects at risk to develop psychosis, compared to healthy controls (HCs), were considered. The heterogeneity of the studies prevented a quantitative synthesis. Results: Out of 319 records screened, 133 studies were included in a final qualitative synthesis. Included studies were mainly carried out using frequency analysis, microstates and event-related potentials. The most common findings included an increase in delta and gamma power, an impairment in sensory gating assessed through P50 and N100 and a reduction of Mismatch Negativity and P300 amplitude in at-risk mental state and early stages of schizophrenia. Progressive changes in some of these electrophysiological measures were associated with transition to psychosis and disease course. Heterogeneous data have been reported for indices evaluating synchrony, connectivity, and evoked-responses in different frequency bands. Conclusions: Multiple EEG-indices were altered during at-risk mental state and early stages of schizophrenia, supporting the hypothesis that cerebral network dysfunctions appear already before the onset of the disorder. Some of these alterations demonstrated association with transition to psychosis or poor functional outcome. However, heterogeneity in subjects' inclusion criteria, clinical measures and electrophysiological methods prevents drawing solid conclusions. Large prospective studies are needed to consolidate findings concerning electrophysiological markers of clinical and functional outcome.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/451973
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 40
social impact