We investigate the 3D Navier–Stokes Cauchy problem. We assume the initial datum v0 is weakly divergence free, sup mathematical equation, where K3 denotes the Kato class. The existence is local for arbitrary data and global if sup mathematical equation is small. Regularity and uniqueness also hold.
Navier–stokes Cauchy problem with jv0(X)^2 lying in the Kato class K3
Crispo F.;Maremonti P.
2021
Abstract
We investigate the 3D Navier–Stokes Cauchy problem. We assume the initial datum v0 is weakly divergence free, sup mathematical equation, where K3 denotes the Kato class. The existence is local for arbitrary data and global if sup mathematical equation is small. Regularity and uniqueness also hold.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.