Dyslipidemias can affect molecular networks underlying the metabolic homeostasis and vascular function leading to atherogenesis at early stages of development. Since disease-related proteins often interact with each other in functional modules, many advanced network-oriented algorithms were applied to patient-derived big data to identify the complex gene–environment interactions underlying the early pathophysiology of dyslipidemias and atherosclerosis. Both the proprotein convertase subtilisin/kexin type 7 (PCSK7) and collagen type 1 alpha 1 chain (COL1A1) genes arose from the application of TFfit and WGCNA algorithms, respectively, as potential useful therapeutic targets in prevention of dyslipidemias. Moreover, the Seed Connector algorithm (SCA) algorithm suggested a putative role of the neuropilin-1 (NRP1) protein as drug target, whereas a regression network analysis reported that niacin may provide benefits in mixed dyslipidemias. Dyslipidemias are highly heterogeneous at the clinical level; thus, it would be helpful to overcome traditional evidence-based paradigm toward a personalized risk assessment and therapy. Network Medicine uses omics data, artificial intelligence (AI), imaging tools, and clinical information to design personalized therapy of dyslipidemias and atherosclerosis. Recently, a novel non-invasive AI-derived biomarker, named Fat Attenuation Index (FAI™) has been established to early detect clinical signs of atherosclerosis. Moreover, an integrated AI-radiomics approach can detect fibrosis and microvascular remodeling improving the customized risk assessment. Here, we offer a network-based roadmap ranging from novel molecular pathways to digital therapeutics which can improve personalized therapy of dyslipidemias.
Network Medicine Approach in Prevention and Personalized Treatment of Dyslipidemias
Faenza M.;Mansueto G.;Napoli C.
2021
Abstract
Dyslipidemias can affect molecular networks underlying the metabolic homeostasis and vascular function leading to atherogenesis at early stages of development. Since disease-related proteins often interact with each other in functional modules, many advanced network-oriented algorithms were applied to patient-derived big data to identify the complex gene–environment interactions underlying the early pathophysiology of dyslipidemias and atherosclerosis. Both the proprotein convertase subtilisin/kexin type 7 (PCSK7) and collagen type 1 alpha 1 chain (COL1A1) genes arose from the application of TFfit and WGCNA algorithms, respectively, as potential useful therapeutic targets in prevention of dyslipidemias. Moreover, the Seed Connector algorithm (SCA) algorithm suggested a putative role of the neuropilin-1 (NRP1) protein as drug target, whereas a regression network analysis reported that niacin may provide benefits in mixed dyslipidemias. Dyslipidemias are highly heterogeneous at the clinical level; thus, it would be helpful to overcome traditional evidence-based paradigm toward a personalized risk assessment and therapy. Network Medicine uses omics data, artificial intelligence (AI), imaging tools, and clinical information to design personalized therapy of dyslipidemias and atherosclerosis. Recently, a novel non-invasive AI-derived biomarker, named Fat Attenuation Index (FAI™) has been established to early detect clinical signs of atherosclerosis. Moreover, an integrated AI-radiomics approach can detect fibrosis and microvascular remodeling improving the customized risk assessment. Here, we offer a network-based roadmap ranging from novel molecular pathways to digital therapeutics which can improve personalized therapy of dyslipidemias.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.