Diverging radial flow takes place in a heterogeneous porous medium where the log conductivity Y = ln K is modeled as a stationary random space function (RSF). The flow is steady, and is generated by a fully penetrating well. A linearly sorbing solute is injected through the well envelope, and we aim at computing the average flux concentration (breakthrough curve). A relatively simple solution for this difficult problem is achieved by adopting, similar to Indelman and Dagan (1999), a few simplifying assumptions : (i) a thick aquifer of large horizontal extent, (ii) mildly heterogeneous medium, (iii) strongly anisotropic formation, and (iv) large Peclet number. By introducing an appropriate Lagrangian framework, three-dimensional transport is mapped onto a one-dimensional domain (tau
Travel time approach to kinetically sorbing solute by diverging radial flows through heterogeneous porous formations
TORALDO, GERARDO;
2012
Abstract
Diverging radial flow takes place in a heterogeneous porous medium where the log conductivity Y = ln K is modeled as a stationary random space function (RSF). The flow is steady, and is generated by a fully penetrating well. A linearly sorbing solute is injected through the well envelope, and we aim at computing the average flux concentration (breakthrough curve). A relatively simple solution for this difficult problem is achieved by adopting, similar to Indelman and Dagan (1999), a few simplifying assumptions : (i) a thick aquifer of large horizontal extent, (ii) mildly heterogeneous medium, (iii) strongly anisotropic formation, and (iv) large Peclet number. By introducing an appropriate Lagrangian framework, three-dimensional transport is mapped onto a one-dimensional domain (tauI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.