In this study, double diffusive free convection of nanofluid within a confined rectangular duct is investigated numerically. The momentum and energy equations are placed in the form of difference equations and solved numerically. The left wall conditions for the concentration and temperature are lesser than those of the right wall and the upper and lower walls are insulated. Different nanofluids are considered such as mixtures with copper, diamond, silicon oxide and titanium oxide, suspended in water. Brinkman and Maxwell models are used to characterize the nanofluid. Tiwari and Das model is opted to define the nanofluid behavior. The simulations are conducted using different nanoparticles, thermal Grashof number 1 ≤ GrT ≤ 20, solute Grashof number 1 ≤ GrC ≤ 15, solid volume fraction 0 ≤ Φ ≤ 0.05, Dufour number 0 ≤ Df ≤ 1, Brinkman number 0 ≤ Br ≤ 2, and Soret number 0 ≤ Sr ≤ 5. Additionally, behavior of volumetric flow strength, skin friction, heat transport intensity and Sherwood number is also examined. The thermal Grashof number, Brinkman number, Dufour, Soret and Schmidt parameters accelerate the velocity and temperature and dwindle the concentration whereas the reversal effect was obtained for the solid volume fraction. The concentration Grashof number diminishes the velocity and temperature and intensifies the concentration. The silver nanoparticles produce the highest velocity whereas diamond nanoparticles cause the lowest velocity and temperature. The maximum temperature is attained with silicon oxide.

Double diffusion in a rectangular duct using metals or oxides suspended in a viscous fluid

Buonomo B.;Manca O.;
2021

Abstract

In this study, double diffusive free convection of nanofluid within a confined rectangular duct is investigated numerically. The momentum and energy equations are placed in the form of difference equations and solved numerically. The left wall conditions for the concentration and temperature are lesser than those of the right wall and the upper and lower walls are insulated. Different nanofluids are considered such as mixtures with copper, diamond, silicon oxide and titanium oxide, suspended in water. Brinkman and Maxwell models are used to characterize the nanofluid. Tiwari and Das model is opted to define the nanofluid behavior. The simulations are conducted using different nanoparticles, thermal Grashof number 1 ≤ GrT ≤ 20, solute Grashof number 1 ≤ GrC ≤ 15, solid volume fraction 0 ≤ Φ ≤ 0.05, Dufour number 0 ≤ Df ≤ 1, Brinkman number 0 ≤ Br ≤ 2, and Soret number 0 ≤ Sr ≤ 5. Additionally, behavior of volumetric flow strength, skin friction, heat transport intensity and Sherwood number is also examined. The thermal Grashof number, Brinkman number, Dufour, Soret and Schmidt parameters accelerate the velocity and temperature and dwindle the concentration whereas the reversal effect was obtained for the solid volume fraction. The concentration Grashof number diminishes the velocity and temperature and intensifies the concentration. The silver nanoparticles produce the highest velocity whereas diamond nanoparticles cause the lowest velocity and temperature. The maximum temperature is attained with silicon oxide.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/440585
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 7
social impact