The Toll-interleukin 1 receptor superfamily includes the genes interleukin 1 receptor-like 1 (IL1RL1), Toll like receptors (TLRs), myeloid differentiation primary-response 88 (MyD88), and MyD88 adaptor-like (TIRAP). This study describes the interaction between MyD88, TIRAP and IL1RL1 against Helicobacter pylori infection. Cases and controls were genotyped at the polymorphic sites MyD88 rs6853, TIRAP rs8177374 and IL1RL1 rs11123923. The results show that specific combinations of IL1RL1-TIRAP (AA-CT; P: 2,8 × 10–17) and MyD88-TIRAP-IL1RL1 (AA-CT-AA; P: 1,4 × 10–8) – but not MyD88 alone—act synergistically against Helicobacter pylori. Nuclear magnetic resonance (NMR) clearly discriminates cases from controls by highlighting significantly different expression levels of several metabolites (tyrosine, tryptophan, phenylalanine, branched-chain amino acids, short chain fatty acids, glucose, sucrose, urea, etc.). NMR also identifies the following dysregulated metabolic pathways associated to Helicobacter pylori infection: phenylalanine and tyrosine metabolism, pterine biosynthesis, starch and sucrose metabolism, and galactose metabolism. Furthermore, NMR discriminates between the cases heterozygous at the IL1RL1 locus from those homozygous at the same locus. Heterozygous patients are characterized by high levels of lactate, and IL1RL1—both associated with anti-inflammatory activity—and low levels of the pro-inflammatory molecules IL-1β, TNF-α, COX-2, and IL-6.

Interaction between MyD88, TIRAP and IL1RL1 against Helicobacter pylori infection.

Romano M;Tuccillo C;Iannelli A;
2020

Abstract

The Toll-interleukin 1 receptor superfamily includes the genes interleukin 1 receptor-like 1 (IL1RL1), Toll like receptors (TLRs), myeloid differentiation primary-response 88 (MyD88), and MyD88 adaptor-like (TIRAP). This study describes the interaction between MyD88, TIRAP and IL1RL1 against Helicobacter pylori infection. Cases and controls were genotyped at the polymorphic sites MyD88 rs6853, TIRAP rs8177374 and IL1RL1 rs11123923. The results show that specific combinations of IL1RL1-TIRAP (AA-CT; P: 2,8 × 10–17) and MyD88-TIRAP-IL1RL1 (AA-CT-AA; P: 1,4 × 10–8) – but not MyD88 alone—act synergistically against Helicobacter pylori. Nuclear magnetic resonance (NMR) clearly discriminates cases from controls by highlighting significantly different expression levels of several metabolites (tyrosine, tryptophan, phenylalanine, branched-chain amino acids, short chain fatty acids, glucose, sucrose, urea, etc.). NMR also identifies the following dysregulated metabolic pathways associated to Helicobacter pylori infection: phenylalanine and tyrosine metabolism, pterine biosynthesis, starch and sucrose metabolism, and galactose metabolism. Furthermore, NMR discriminates between the cases heterozygous at the IL1RL1 locus from those homozygous at the same locus. Heterozygous patients are characterized by high levels of lactate, and IL1RL1—both associated with anti-inflammatory activity—and low levels of the pro-inflammatory molecules IL-1β, TNF-α, COX-2, and IL-6.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/439662
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 13
social impact