We develop an algorithm based on the method proposed by Dickman for directly measuring pressure in lattice-gas models. The algorithm gives the possibility to access the equation of state with a single run by adding multiple ghost sites to the original system. This feature considerably improves calculations and makes the algorithm particularly efficient for systems with inhomogeneous density profiles, both in equilibrium and nonequilibrium steady states. We illustrate its broad applicability by considering some paradigmatic systems of statistical mechanics such as the lattice gas under gravity, nearest-neighbor exclusion models in finite dimension and on regular random graphs, and the boundary-driven simple symmetric exclusion process.

Measuring pressure in equilibrium and nonequilibrium lattice-gas models

Sellitto, Mauro
2020

Abstract

We develop an algorithm based on the method proposed by Dickman for directly measuring pressure in lattice-gas models. The algorithm gives the possibility to access the equation of state with a single run by adding multiple ghost sites to the original system. This feature considerably improves calculations and makes the algorithm particularly efficient for systems with inhomogeneous density profiles, both in equilibrium and nonequilibrium steady states. We illustrate its broad applicability by considering some paradigmatic systems of statistical mechanics such as the lattice gas under gravity, nearest-neighbor exclusion models in finite dimension and on regular random graphs, and the boundary-driven simple symmetric exclusion process.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/436957
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact