We develop an algorithm based on the method proposed by Dickman for directly measuring pressure in lattice-gas models. The algorithm gives the possibility to access the equation of state with a single run by adding multiple ghost sites to the original system. This feature considerably improves calculations and makes the algorithm particularly efficient for systems with inhomogeneous density profiles, both in equilibrium and nonequilibrium steady states. We illustrate its broad applicability by considering some paradigmatic systems of statistical mechanics such as the lattice gas under gravity, nearest-neighbor exclusion models in finite dimension and on regular random graphs, and the boundary-driven simple symmetric exclusion process.
Measuring pressure in equilibrium and nonequilibrium lattice-gas models
Sellitto, Mauro
2020
Abstract
We develop an algorithm based on the method proposed by Dickman for directly measuring pressure in lattice-gas models. The algorithm gives the possibility to access the equation of state with a single run by adding multiple ghost sites to the original system. This feature considerably improves calculations and makes the algorithm particularly efficient for systems with inhomogeneous density profiles, both in equilibrium and nonequilibrium steady states. We illustrate its broad applicability by considering some paradigmatic systems of statistical mechanics such as the lattice gas under gravity, nearest-neighbor exclusion models in finite dimension and on regular random graphs, and the boundary-driven simple symmetric exclusion process.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.