Hexavalent chromium (Cr(VI)) in water systems is a major hazard for living organisms, including humans. The most popular technology currently used to remove Cr(VI) from polluted water is sorption for its effectiveness, ease of use, low cost and environmental friendliness. The electrostatic interactions between chromium species and the sorbent matrix are the main determinants of Cr(VI) sorption. The pH plays a central role in the process by affecting chromium speciation and the net charge on sorbent surface. In most cases, Cr(VI) sorption is an endothermic process whose kinetics is satisfactorily described by the pseudo second-order model. A critical survey of the recent literature, however, reveals that the thermodynamic and kinetic parameters reported for Cr(VI) sorption are often incorrect and/or erroneously interpreted.

Cr(VI) sorption from aqueous solution: A review

Chianese S.
;
Iovino P.;Musmarra D.;Salvestrini S.
2020

Abstract

Hexavalent chromium (Cr(VI)) in water systems is a major hazard for living organisms, including humans. The most popular technology currently used to remove Cr(VI) from polluted water is sorption for its effectiveness, ease of use, low cost and environmental friendliness. The electrostatic interactions between chromium species and the sorbent matrix are the main determinants of Cr(VI) sorption. The pH plays a central role in the process by affecting chromium speciation and the net charge on sorbent surface. In most cases, Cr(VI) sorption is an endothermic process whose kinetics is satisfactorily described by the pseudo second-order model. A critical survey of the recent literature, however, reveals that the thermodynamic and kinetic parameters reported for Cr(VI) sorption are often incorrect and/or erroneously interpreted.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/435257
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 27
social impact