MicroRNAs (miRNA), and more recently long non-coding RNAs (lncRNA), are emerging as a driving force for hepatocellular carcinoma (HCC), one of the leading causes of cancer-related death. In this work, we investigated a possible RNA regulatory network involving two oncosuppressive miRNAs, miR-125a and let-7e, and a long non-coding antisense RNA, SPACA6P-AS (SP-AS), all transcribed from the same locus, with SP-AS in the opposite direction and thus carrying complementary sequences to the miRNAs. In vitro experiments validated the binding of the miRNAs to SP-AS. Then, the boosting of either the miRNAs or SP-AS levels demonstrated their reciprocal inhibition. In addition, overexpression of SP-AS resulted in a reduced silencing activity of miR-125a and let-7e toward their key oncogenic targets, i.e., Lin28b, MMP11, SIRT7, Zbtb7a, Cyclin D1, CDC25B, HMGA2, that resulted significantly upregulated. Finally, the analysis of 374 HCC samples in comparison to 50 normal liver tissues showed an upregulation of SP-AS and a reverse expression of miR-125a, not observed for let-7e; consistently, miR-125a oncogenic targets were upregulated. Overall, the data depict a novel competing endogenous RNA (ceRNA) network, ceRNET, whereby miR-125a can regulate the expression of SP-AS, which in turn regulates the miRNA by competing with the binding to the mRNA targets. We speculate that the unbalancing of any network component may contribute to hepatocarcinogenesis.

A novel ceRNA regulatory network involving the long non-coding antisense RNA SPACA6P-AS, miR-125a and its mRNA targets in hepatocarcinoma cells

Mosca N.;Russo A.;Potenza N.
2020

Abstract

MicroRNAs (miRNA), and more recently long non-coding RNAs (lncRNA), are emerging as a driving force for hepatocellular carcinoma (HCC), one of the leading causes of cancer-related death. In this work, we investigated a possible RNA regulatory network involving two oncosuppressive miRNAs, miR-125a and let-7e, and a long non-coding antisense RNA, SPACA6P-AS (SP-AS), all transcribed from the same locus, with SP-AS in the opposite direction and thus carrying complementary sequences to the miRNAs. In vitro experiments validated the binding of the miRNAs to SP-AS. Then, the boosting of either the miRNAs or SP-AS levels demonstrated their reciprocal inhibition. In addition, overexpression of SP-AS resulted in a reduced silencing activity of miR-125a and let-7e toward their key oncogenic targets, i.e., Lin28b, MMP11, SIRT7, Zbtb7a, Cyclin D1, CDC25B, HMGA2, that resulted significantly upregulated. Finally, the analysis of 374 HCC samples in comparison to 50 normal liver tissues showed an upregulation of SP-AS and a reverse expression of miR-125a, not observed for let-7e; consistently, miR-125a oncogenic targets were upregulated. Overall, the data depict a novel competing endogenous RNA (ceRNA) network, ceRNET, whereby miR-125a can regulate the expression of SP-AS, which in turn regulates the miRNA by competing with the binding to the mRNA targets. We speculate that the unbalancing of any network component may contribute to hepatocarcinogenesis.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/434518
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 18
social impact