Despite extensive research studies, the seismic response of infilled reinforced concrete buildings remains an open problem due to both the complexity of the interaction between the infill and the frame and the large number of parameters involved. Thus, guidelines for both modelling and analysis are still lacking and the infill walls are normally treated as nonstructural components in seismic codes. However, it may be not conservative to neglect the influence of infills. In fact, the infill masonry walls may significantly affect the stiffness, strength, and energy dissipation capacity of RC buildings, even when they are regularly distributed. Recognizing this influence and its importance on the vulnerability of infilled frames, Eurocode 8 requires amplifying seismic action effects due to infills. In this paper, the effectiveness of the Eurocode 8 design provisions for infill irregularity in plan and/or elevation was investigated. To this aim, different in-plan layouts of infill walls were selected as marginal cases for which Eurocode 8 does not require amplification of the action effects due to the presence of infills, or the additional measures to counteract these effects are not mandatory. The seismic vulnerability of the infilled RC buildings was evaluated using nonlinear static and nonlinear dynamic analyses. Both cracking and crushing of masonry and stiffness and strength degradation were considered in the analysis. The effect of the layout of the masonry infills on the seismic response in terms of resistance and displacement was evaluated. Results show that in one of the case studies here examined, it is not conservative to neglect the influence of infill panels. In fact, structural failure due to torsion and soft-storey effects may occur even in cases where Eurocode 8 does not require the amplification of the action effects. Finally, the total shear demand on columns may be underestimated, even in cases where the code provisions for infills irregularity are not mandatory, and the additional shear demand in the columns induced by the masonry infill is very low.

Irregularity Effects of Masonry Infills on Nonlinear Seismic Behaviour of RC Buildings

Ferraioli M.
;
2020

Abstract

Despite extensive research studies, the seismic response of infilled reinforced concrete buildings remains an open problem due to both the complexity of the interaction between the infill and the frame and the large number of parameters involved. Thus, guidelines for both modelling and analysis are still lacking and the infill walls are normally treated as nonstructural components in seismic codes. However, it may be not conservative to neglect the influence of infills. In fact, the infill masonry walls may significantly affect the stiffness, strength, and energy dissipation capacity of RC buildings, even when they are regularly distributed. Recognizing this influence and its importance on the vulnerability of infilled frames, Eurocode 8 requires amplifying seismic action effects due to infills. In this paper, the effectiveness of the Eurocode 8 design provisions for infill irregularity in plan and/or elevation was investigated. To this aim, different in-plan layouts of infill walls were selected as marginal cases for which Eurocode 8 does not require amplification of the action effects due to the presence of infills, or the additional measures to counteract these effects are not mandatory. The seismic vulnerability of the infilled RC buildings was evaluated using nonlinear static and nonlinear dynamic analyses. Both cracking and crushing of masonry and stiffness and strength degradation were considered in the analysis. The effect of the layout of the masonry infills on the seismic response in terms of resistance and displacement was evaluated. Results show that in one of the case studies here examined, it is not conservative to neglect the influence of infill panels. In fact, structural failure due to torsion and soft-storey effects may occur even in cases where Eurocode 8 does not require the amplification of the action effects. Finally, the total shear demand on columns may be underestimated, even in cases where the code provisions for infills irregularity are not mandatory, and the additional shear demand in the columns induced by the masonry infill is very low.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/433687
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact