This work investigated diclofenac sorption on 0.5g L-1 activated carbon in a range of temperature (288-318K) and of initial sorbate concentration (24-218mgL-1). Thermodynamic modelling was carried out with the Langmuir isotherm. For kinetic modelling we compared the so-called Diffusion-Controlled Langmuir Kinetics (DCLK) and the pseudo-second order (PSO) model. The maximum sorption capacity of the sorbent, equal to 180mgg-1, was independent of temperature. Experimental data fitted well with both kinetic models, yet the DCLK model was found to be more informative about the mechanism of the process. Kinetic parameters (α, β) increased with the temperature, with α value rising from 5×10-5 to 20×10-5 L mg-1min-0.5, and β value rising from 3×10-6 to 20×10-6 L mg-1min-1 in the temperature range investigated.
Diclofenac sorption from synthetic water: Kinetic and thermodynamic analysis
Salvestrini S.;Fenti A.;Chianese S.
;Iovino P.;Musmarra D.
2020
Abstract
This work investigated diclofenac sorption on 0.5g L-1 activated carbon in a range of temperature (288-318K) and of initial sorbate concentration (24-218mgL-1). Thermodynamic modelling was carried out with the Langmuir isotherm. For kinetic modelling we compared the so-called Diffusion-Controlled Langmuir Kinetics (DCLK) and the pseudo-second order (PSO) model. The maximum sorption capacity of the sorbent, equal to 180mgg-1, was independent of temperature. Experimental data fitted well with both kinetic models, yet the DCLK model was found to be more informative about the mechanism of the process. Kinetic parameters (α, β) increased with the temperature, with α value rising from 5×10-5 to 20×10-5 L mg-1min-0.5, and β value rising from 3×10-6 to 20×10-6 L mg-1min-1 in the temperature range investigated.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.