DC railways are characterized by particularly intense arcing caused by pantograph detachment, due to the large current intensity and the general implementation of onboard resonant filters, whose transient response is triggered by electric transients including electric arcs. Electric arc depends on the train speed (the relative speed between the sliding contact over the pantograph and the hot spot on the catenary system), the intensity of the collected pantograph current and the line voltage level. Electric arcs are broadband in nature and can trigger the system transient response dominated by the resonant filter, besides interfering with the operation of onboard equipment (such as for energy conversion and metering).
Dataset of measured and commented pantograph electric arcs in DC railways
Gallo D.;Dalle Femine A.;
2020
Abstract
DC railways are characterized by particularly intense arcing caused by pantograph detachment, due to the large current intensity and the general implementation of onboard resonant filters, whose transient response is triggered by electric transients including electric arcs. Electric arc depends on the train speed (the relative speed between the sliding contact over the pantograph and the hot spot on the catenary system), the intensity of the collected pantograph current and the line voltage level. Electric arcs are broadband in nature and can trigger the system transient response dominated by the resonant filter, besides interfering with the operation of onboard equipment (such as for energy conversion and metering).I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.