Liquid samples of clarified apple and apricot juices at different production stages were investigated using visible light micro-Raman spectroscopy in order to assess its potential in monitoring fruit juice production. As is well-known, pectin plays a strategic role in the production of clarified juice and the possibility of using Raman for its detection during production was therefore evaluated. The data analysis has enabled the clear identification of pectin. In particular, Raman spectra of apple juice samples from washed and crushed fruits revealed a peak at 845 cm-1 (typical of pectin) which disappears in the Raman spectra of depectinised samples. The fructose content was also revealed by the presence of four peaks at 823 cm-1, 872 cm-1, 918 cm-1 and 975 cm-1. In the case of apricot juice, several Raman fingerprints of β-carotene at 1008, 1159 and 1520 cm-1 were also highlighted. Present results resulted interesting for the exclusive use of optical methods for the quantitative determination of the above-mentioned substances in place of the biochemical assays generally used for this purpose, which are time consuming and require different chemical reagents for each of them. © 2007 by MDPI.

Investigation on clarified fruit juice composition by using visible light micro-Raman spectroscopy

Diano N.;Mita D. G.;Lepore M.
2007

Abstract

Liquid samples of clarified apple and apricot juices at different production stages were investigated using visible light micro-Raman spectroscopy in order to assess its potential in monitoring fruit juice production. As is well-known, pectin plays a strategic role in the production of clarified juice and the possibility of using Raman for its detection during production was therefore evaluated. The data analysis has enabled the clear identification of pectin. In particular, Raman spectra of apple juice samples from washed and crushed fruits revealed a peak at 845 cm-1 (typical of pectin) which disappears in the Raman spectra of depectinised samples. The fructose content was also revealed by the presence of four peaks at 823 cm-1, 872 cm-1, 918 cm-1 and 975 cm-1. In the case of apricot juice, several Raman fingerprints of β-carotene at 1008, 1159 and 1520 cm-1 were also highlighted. Present results resulted interesting for the exclusive use of optical methods for the quantitative determination of the above-mentioned substances in place of the biochemical assays generally used for this purpose, which are time consuming and require different chemical reagents for each of them. © 2007 by MDPI.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/432123
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 29
social impact