Potassium depletion affects AQP2 expression and the cellular composition of the kidney collecting duct. This, in turn, contributes to the development of a secondary form of nephrogenic diabetes insipidus and hypokalemic nephropathy. Here we show that after 14 days of potassium depletion, the cellular fraction of A-type intercalated cells increases while the fraction of principal cells decreases along the outer medullary collecting duct in rats. The intercalated cells acquired a novel distribution pattern forming rows of cells attached to each other. These morphological changes occur progressively and reverse after 7 days of recovery on normal rat chow diet. The cellular remodeling mainly occurred in the inner stripe of outer medulla similar to the previously seen effect of lithium on the collecting duct cellular profile. The cellular remodeling is associated with the appearance of cells double labelled with both specific markers of principal and type-A intercalated cells. The appearance of this cell type was associated with the downregulation of the Notch signaling via the Hes1 pathways. These results show that the epithelium of the collecting duct has a high degree of plasticity and that Notch signaling likely plays a key role during hypokalemia.

Potassium depletion induces cellular conversion in the outer medullary collecting duct altering Notch signaling pathway

Iervolino A.;Perna A. F.;Capasso G.;Trepiccione F.
2020

Abstract

Potassium depletion affects AQP2 expression and the cellular composition of the kidney collecting duct. This, in turn, contributes to the development of a secondary form of nephrogenic diabetes insipidus and hypokalemic nephropathy. Here we show that after 14 days of potassium depletion, the cellular fraction of A-type intercalated cells increases while the fraction of principal cells decreases along the outer medullary collecting duct in rats. The intercalated cells acquired a novel distribution pattern forming rows of cells attached to each other. These morphological changes occur progressively and reverse after 7 days of recovery on normal rat chow diet. The cellular remodeling mainly occurred in the inner stripe of outer medulla similar to the previously seen effect of lithium on the collecting duct cellular profile. The cellular remodeling is associated with the appearance of cells double labelled with both specific markers of principal and type-A intercalated cells. The appearance of this cell type was associated with the downregulation of the Notch signaling via the Hes1 pathways. These results show that the epithelium of the collecting duct has a high degree of plasticity and that Notch signaling likely plays a key role during hypokalemia.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/427815
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact